
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447 

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 3:  
Language Models  
(Intro to Probability Models for NLP)



CS447: Natural Language Processing (J. Hockenmaier)

Last lecture’s key concepts
Dealing with words: 
-Zipf’s Law
-Tokenization, normalization 

Morphology (word structure): 
-stems, affixes
-Derivational vs. inflectional morphology
-Compounding
-Stem changes
-Morphological analysis and generation

Finite-state methods in NLP
-Finite-state automata
-Finite-state transducers
-Composing finite-state transducers

�2



CS447: Natural Language Processing (J. Hockenmaier)

Finite-state transducers
– FSTs define a relation between two regular 

languages.
– Each state transition maps (transduces) a 

character from the input language to a character (or 
a sequence of characters) in the output language  
 

– By using the empty character (ε), characters can 
be deleted (x:ε) or inserted(ε:y)  
 

– FSTs can be composed (cascaded), allowing us to 
define intermediate representations. 

�3

x:y

x:ε ε:y



CS447: Natural Language Processing (J. Hockenmaier)

Today’s lecture
How can we distinguish word salad, spelling errors 
and grammatical sentences?

Language models define probability distributions  
over the strings in a language.
N-gram models are the simplest and most common kind of 
language model.
We’ll look at how these models are defined, how to estimate 
(learn) them, and what their shortcomings are. 

We’ll also review some very basic probability theory.

�4



CS447: Natural Language Processing (J. Hockenmaier)

Why do we need language models?
Many NLP tasks require natural language output:
-Machine translation: return text in the target language
-Speech recognition: return a transcript of what was spoken
-Natural language generation: return natural language text
-Spell-checking: return corrected spelling of input

Language models define probability distributions  
over (natural language) strings or sentences.
➔ We can use a language model to score possible 
output strings so that we can choose the best (i.e. 
most likely) one: if PLM(A) > PLM(B), return A, not B

�5



CS447: Natural Language Processing (J. Hockenmaier)

Hmmm, but… 
… what does it mean for a language model to “define 
a probability distribution”? 


… why would we want to define probability 
distributions over languages? 


… how can we construct a language model such that 
it actually defines a probability distribution?


�6



CS447: Natural Language Processing (J. Hockenmaier)

Reminder: 
Basic Probability 
Theory

�7



CS447: Natural Language Processing (J. Hockenmaier) �8

P(    )    = 2/15 
P(blue) = 5/15 
P(blue |    ) = 2/5

P(    )    = 1/15 
P(red)   = 5/15 
P(   )     = 5/15

P(    or   ) = 2/15 
P(    |red) = 3/5 

Pick a random shape, then put it back in the bag.
Sampling with replacement



CS447: Natural Language Processing (J. Hockenmaier) �9

Pick a random shape, then put it back in the bag.
What sequence of shapes will you draw?

P(                  ) 

P(                  )

= 1/15 × 1/15 × 1/15 × 2/15  
= 2/50625

= 3/15 × 2/15 × 2/15 × 3/15 
= 36/50625

P(    )    = 2/15 
P(blue) = 5/15 
P(blue |    ) = 2/5

P(    )    = 1/15 
P(red)   = 5/15 
P(   )     = 5/15

P(    or   ) = 2/15 
P(    |red) = 3/5 

Sampling with replacement



CS447: Natural Language Processing (J. Hockenmaier)

Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'

Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'

�10

P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66
P(to) = 2/66

P(her) = 2/66
P(sister) = 2/66
P(,) = 4/66
P(') = 4/66

Sampling with replacement



CS447: Natural Language Processing (J. Hockenmaier)

P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66
P(to) = 2/66

P(her) = 2/66
P(sister) = 2/66
P(,) = 4/66
P(') = 4/66

beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 
a book''pictures or' to

�11

In this model, P(English sentence) = P(word salad) 

Sampling with replacement



CS447: Natural Language Processing (J. Hockenmaier)

Probability theory: terminology
Trial (aka “experiment”) 

Picking a shape, predicting a word
Sample space Ω: 

The set of all possible outcomes  
(all shapes; all words in Alice in Wonderland)

Event ω ⊆ Ω: 
An actual outcome (a subset of Ω) 
(predicting ‘the’, picking a triangle)

Random variable X: Ω → T 
A function from the sample space (often the identity function) 
Provides a ‘measurement of interest’ from a trial/experiment 
(Did we pick ‘Alice’/a noun/a word starting with “x”/…?)

�12



CS447: Natural Language Processing (J. Hockenmaier)

P(ω) defines a distribution over Ω iff  

1) Every event ω has a probability P(ω) between 0 and 1:  

 
2) The null event ∅ has probability P(∅) = 0: 

 
3) And the probability of all disjoint events sums to 1.

What is a probability distribution?

�13

0 ⇥ P (� � �) ⇥ 1
P (⇤) = 0 and P (�) = 1

�

�i��

P (�i) = 1
0 ⇥ P (� � �) ⇥ 1

P (⇤) = 0 and P (�) = 1
�

�i��

P (�i) = 1

if ⇥j �= i : �i ⌅ �j = ⇤
and

�
i �i = �

0 ⇥ P (� � �) ⇥ 1
P (⇤) = 0 and P (�) = 1

�

�i��

P (�i) = 1



CS447: Natural Language Processing (J. Hockenmaier)

‘Discrete’: a fixed (often finite) number of outcomes
 
Bernoulli distribution (two possible outcomes)
Defined by the probability of success (= head/yes) 
The probability of head is p. The probability of tail is 1−p. 

Categorical distribution (N possible outcomes c1…cN)
The probability of category/outcome ci is pi (0 ≤ pi ≤ 1; ∑i pi = 1). 
- e.g. the probability of getting a six when rolling a die once 
- e.g. the probability of the next word (picked among a vocabulary of N words)
(NB: Most of the distributions we will see in this class are categorical. 
Some people call them multinomial distributions, but those refer to sequences 
of trials, e.g. the probability of getting five sixes when rolling a die ten times)

Discrete probability distributions: 
single trials

�14



CS447: Natural Language Processing (J. Hockenmaier)

The conditional probability of X given Y, P(X | Y ),  
is defined in terms of the probability of Y, P( Y ),  
and the joint probability of X and Y, P(X,Y ):

Joint and Conditional Probability

P (X|Y ) =
P (X, Y )
P (Y )

P(blue |       ) = 2/5

�15



CS447: Natural Language Processing (J. Hockenmaier)

The chain rule
The joint probability P(X,Y) can also be expressed in 
terms of the conditional probability P(X | Y)  
 
 

This leads to the so-called chain rule: 

�16

P (X, Y ) = P (X|Y )P (Y )

P (X1, X2, . . . , Xn) = P (X1)P (X2|X1)P (X3|X2, X1)....P (Xn|X1, ...Xn�1)

= P (X1)
n�

i=2

P (Xi|X1 . . . Xi�1)



CS447: Natural Language Processing (J. Hockenmaier)

Two random variables X and Y are independent if 
 
 
 

If X and Y are independent, then P(X | Y) = P(X):

Independence

P (X, Y ) = P (X)P (Y )

P (X|Y ) =
P (X, Y )
P (Y )

=
P (X)P (Y )

P (Y )
(X ,Y independent)

= P (X)

�17



CS447: Natural Language Processing (J. Hockenmaier)

Probability models
Building a probability model consists of two steps:
1. Defining the model
2. Estimating the model’s parameters  
    (= training/learning ) 

Models (almost) always make  
independence assumptions.

That is, even though X and Y are not actually independent,  
our model may treat them as independent.

This reduces the number of model parameters that 
we need to estimate (e.g. from n2 to 2n)

�18



CS447: Natural Language Processing (J. Hockenmaier)

Language modeling 
with n-grams

�19



CS447: Natural Language Processing (J. Hockenmaier)

A language model over a vocabulary V  
assigns probabilities to strings drawn from V*. 

Recall the chain rule: 
�  

An n-gram language model assumes each word  
depends only on the last n−1 words:
�

P(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1))

Pngram(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1−(n+1)))

Language modeling with N-grams

�20



CS447: Natural Language Processing (J. Hockenmaier)

N-gram models
N-gram models assume each word (event)  
depends only on the previous n−1 words (events):

�

�

�

Such independence assumptions are called  
Markov assumptions (of order n−1).

Unigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i))

Bigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1))

Trigram model: P(w(1) . . . w(N)) =
N

∏
i=1

P(w(i) |w(i−1), w(i−2))

�21



CS447: Natural Language Processing (J. Hockenmaier)

P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66
P(to) = 2/66

P(her) = 2/66
P(sister) = 2/66
P(,) = 4/66
P(') = 4/66

beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 
a book''pictures or' to

�22

In this model, P(English sentence) = P(word salad) 

A unigram model for Alice



CS447: Natural Language Processing (J. Hockenmaier) �23

Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of  | w(i–1) = use)     = 1
P(w(i) = sister | w(i–1) = her) =  1
P(w(i) = beginning | w(i–1) = was) = 1/2
P(w(i) = reading | w(i–1) = was) = 1/2

 

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice



CS447: Natural Language Processing (J. Hockenmaier) �24

English  
Alice was beginning to get very 
tired of sitting by her sister on 
the bank, and of having nothing to 
do: once or twice she had peeped 
into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is 
the use of a book,' thought Alice 
'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 
a book''pictures or' to

Now, P(English) ⪢ P(word salad) 

Using a bigram model for Alice

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of  | w(i–1) = use)     = 1
P(w(i) = sister | w(i–1) = her) =  1
P(w(i) = beginning | w(i–1) = was) = 1/2
P(w(i) = reading | w(i–1) = was) = 1/2

 

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3



CS447: Natural Language Processing (J. Hockenmaier)

Where do we get the 
probabilities from?

�25



CS447: Natural Language Processing (J. Hockenmaier)

Learning (estimating) a language model
Where do we get the parameters of our model 
(its actual probabilities) from? 
      P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???
We need (a large amount of) text as training data  
to estimate the parameters of a language model.

The most basic parameter estimation technique: 
relative frequency estimation (= counts)
      P(w(i) = ‘the’ | w(i–1) = ‘on’) =  C(‘on the’) / C(‘on’)  
Also called Maximum Likelihood Estimation (MLE)
 
NB: MLE assigns all probability mass to events  
that occur in the training corpus.

�26



CS447: Natural Language Processing (J. Hockenmaier)

Are n-gram models 
actual language 
models?

�27



CS447: Natural Language Processing (J. Hockenmaier)

How do n-gram models define P(L)?
An n-gram model defines �  in terms of the 
probability of predicting each word: �  

With a fixed vocabulary V, it’s easy to make sure �   
is a distribution:  �   and �

 
If �  is a distribution, this model defines  
one distribution (over all strings) for each length N  

But the strings of a language L don’t all have the same length
English =  {“yes!”, “I agree”, “I see you”, …}  

And there is no Nmax that limits how long strings in L can get.

Solution: the EOS (end-of-sentence) token!

Pngram(w(1) . . . w(N))
Pbigram(w(1) . . . w(N)) = ∏

i=1...N

P(w(i) |w(i−1))

P(w(i) |w(i−1))

∑
i=1...|V|

P(wi |wj) = 1 ∀i, j0 ≤ P(wi |wj) ≤ 1

P(w(i) |w(i−1))

�28



CS447: Natural Language Processing (J. Hockenmaier)

�How do n-gram models define P(L)?
Think of a language model as a stochastic process:
-At each time step, randomly pick one more word.
-Stop generating more words when the word you pick is a special end-

of-sentence (EOS) token. 
To be able to pick the EOS token, we have to modify our 
training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = V ∪ {EOS}
We then get an actual language model,  
i.e. a distribution over strings of any length

Technically, this is only true because P(EOS | …) will be high enough that we are always 
guaranteed to stop after having generated a finite number of words 

Why do we care about having one model for all lengths?
We can now compare the probabilities of strings of different 
lengths, because they’re computed by the same distribution.

�29



CS447: Natural Language Processing (J. Hockenmaier)

A couple more 
tweaks…

�30



CS447: Natural Language Processing (J. Hockenmaier)

Handling unknown words: UNK

�

Training:
-Assume a fixed vocabulary (e.g. all words that occur at least 
n times in the training corpus)
-Replace all other words in the corpus by a token <UNK>
-Estimate the model on this modified training corpus. 

Testing (e.g to compute probability of a string): 
-Replace any words not in the vocabulary by  <UNK> 

Refinements: 
use different UNK tokens for different types of words 
(numbers, etc.).

�31



CS447: Natural Language Processing (J. Hockenmaier)

What about the beginning of the sentence?

In a trigram model 
�

only the third term �  is an actual trigram 
probability. What about �  and �  ?

If this bothers you:  
Add n–1 beginning-of-sentence (BOS) symbols to 
each sentence for an n–gram model: 
BOS1 BOS2 Alice was … 

Now the unigram and bigram probabilities  
involve only BOS symbols.


P(w(1)w(2)w(3)) = P(w(1))P(w(2) |w(1))P(w(3) |w(2), w(1))
P(w(3) |w(2), w(1))

P(w(1)) P(w(2) |w(1))

�32



CS447: Natural Language Processing (J. Hockenmaier)

To recap…

�33



CS447: Natural Language Processing (J. Hockenmaier)

1. Replace all rare words in training corpus with UNK
2. Bracket each sentence by special start and end symbols:

<s> Alice was beginning to get very tired… </s>

3. Vocabulary V’ = all tokens in modified training corpus  
    (all common words,  UNK, <s>, </s>)
4. Count the frequency of each bigram….

C(<s> Alice) = 1, C(Alice was) = 1, …

5. .... and normalize these frequencies to get probabilities:

�P(was |Alice) = ∑
wi∈V′�

C(Alice was)
C(Alice wi)

Estimating a bigram models with BOS 
(<s>), EOS (</s>) and UNK using MLE

�34



CS447: Natural Language Processing (J. Hockenmaier)

Using language 
models

�35



CS447: Natural Language Processing (J. Hockenmaier)

How do we use language models?
Independently of any application, we can use a 
language model as a random sentence generator 
(i.e we sample sentences according to their language model 
probability)

Systems for applications such as machine translation, 
speech recognition, spell-checking, generation, often 
produce multiple candidate sentences as output.
-We prefer output sentences SOut that have a higher probability 
-We can use a language model P(SOut) to score and rank these 
different candidate output sentences, e.g. as follows:

      argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut) 

�36



CS447: Natural Language Processing (J. Hockenmaier)

Using n-gram models 
to generate language

�37



CS447: Natural Language Processing (J. Hockenmaier)

Generating from a distribution

�38

How do you generate text from an n-gram model? 

That is, how do you sample from a distribution P(X |Y=y)?
-Assume X has N possible outcomes (values): {x1, …, xN} 
and P(X=xi | Y=y) = pi  
-Divide the interval [0,1] into N smaller intervals according to 
the probabilities of the outcomes
-Generate a random number r between 0 and 1. 
-Return the x1 whose interval the number is in.

x1 x2 x3 x4 x5
 0               p1                        p1+p2            p1+p2+p3            p1+p2+p3+p4     1

r



CS447: Natural Language Processing (J. Hockenmaier)

Generating the Wall Street Journal

�39



CS447: Natural Language Processing (J. Hockenmaier)

Generating Shakespeare 

�40



CS447: Natural Language Processing (J. Hockenmaier)

Shakespeare as corpus
The Shakespeare corpus consists of N=884,647 word 
tokens and a vocabulary of V=29,066 word types  

Shakespeare produced 300,000 bigram types  
out of V2= 844 million possible bigram types.

99.96% of possible bigrams don’t occur in the corpus.

Our relative frequency estimate assigns non-zero 
probability to only 0.04% of the possible bigrams  
That percentage is even lower for trigrams, 4-grams, etc.
4-grams look like Shakespeare because they are Shakespeare!

�41



CS447: Natural Language Processing (J. Hockenmaier)

We estimated a model on 440K word tokens, but:

Only 30,000 word types occur in the training data  
Any word that does not occur in the training data  
has zero probability!

Only 0.04% of all possible bigrams (over 30K word 
types) occur in the training data  
Any bigram that does not occur in the training data  
has zero probability (even if we have seen both words in 
the bigram)

MLE doesn’t capture unseen events

�42



CS447: Natural Language Processing (J. Hockenmaier)

How we assign non-zero 
probability to unseen events?

We have to “smooth” our distributions to assign some 
probability mass to unseen events 
 
 
 
 
 
 
 
 
We won’t talk much about smoothing this year.

�43

 
 

P(seen)
= 1.0

???
P(seen)

< 1.0

P(unseen)
> 0.0

MLE model Smoothed model



CS447: Natural Language Processing (J. Hockenmaier)

Smoothing methods
Add-one smoothing:  
Hallucinate counts that didn’t occur in the data

Linear interpolation: 
�
Interpolate n-gram model with (n–1)-gram model. 

Absolute Discounting: Subtract constant count from 
frequent events and add it to rare events

Kneser-Ney: AD with modified unigram probabilities 

Good-Turing: Use probability of rare events to 
estimate probability of unseen events

P̃(w |w′ �, w′ �′�) = λ ̂P(w |w′�, w′�′ �) + (1 − λ)P̃(w |w′ �)

�44



CS447: Natural Language Processing (J. Hockenmaier)

Add-One (Laplace) Smoothing
A really simple way to do smoothing:  
Increment the actual observed count of every possible 
event (e.g. bigram) by a hallucinated count of 1  
(or by a hallucinated count of some k with 0<k<1).

Shakespeare bigram model (roughly):
        0.88 million actual bigram counts
 + 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model 
come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still doesn’t 
work very well. 

�45



CS447: Natural Language Processing (J. Hockenmaier)

Evaluation

�46



CS447: Natural Language Processing (J. Hockenmaier)

Intrinsic vs Extrinsic Evaluation
How do we know whether one language model  
is better than another? 

There are two ways to evaluate models:
- intrinsic evaluation captures how well the model captures 
what it is supposed to capture (e.g. probabilities)
-extrinsic (task-based) evaluation captures how useful the 
model is in a particular task.

Both cases require an evaluation metric that allows us 
to measure and compare the performance of different 
models.

�47



CS447: Natural Language Processing (J. Hockenmaier)

Intrinsic Evaluation  
of Language Models: 
Perplexity

�48



CS447: Natural Language Processing (J. Hockenmaier)

Perplexity
The perplexity of a language models is defined as  
the inverse ( � ) of the probability of the test set, 
normalized ( � ) by the # of tokens (N) in the test set. 

If a LM assigns probability P(w1, …, wN) to a test 
corpus w1…wN, the LM’s perplexity, PP(w1…wN), is 
 
 

A LM with lower perplexity is better because it assigns 
a higher probability to the unseen test corpus.
LM1 and LM2’s perplexity can only be compared if they use the same vocabulary
— Trigram models have lower perplexity than bigram models;  
— Bigram models have lower perplexity than unigram models, etc. 

1
P( . . . )

N . . .

�49

PP (w1...wN ) = P (w1...wN )�
1
N

= N

⇥
1

P (w1...wN )

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)

PP (w1...wN ) = P (w1...wN )�
1
N

= N

⇥
1

P (w1...wN )

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)



CS447: Natural Language Processing (J. Hockenmaier)

Practical issues
Since language model probabilities are very small, 
multiplying them together often yields to underflow. 

It is often better to use logarithms instead, so replace
 
 
 
 
with

�50

PP(w1...wN) =def
N

s
N

’
i=1

1
P(wi|wi�1, ...,wi�n+1)

PP(w1...wN) =def exp
✓
� 1

N

N

Â
i=1

logP(wi|wi�1, ...,wi�n+1

◆



CS447: Natural Language Processing (J. Hockenmaier)

Extrinsic (Task-Based) 
Evaluation of LMs:  
Word Error Rate

�51



CS447: Natural Language Processing (J. Hockenmaier)

Intrinsic vs. Extrinsic Evaluation
Perplexity tells us which LM assigns a higher 
probability to unseen text 

This doesn’t necessarily tell us which LM is better for 
our task (i.e. is better at scoring candidate sentences) 

Task-based evaluation: 
-Train model A, plug it into your system for performing task T
-Evaluate performance of system A on task T.
-Train model B, plug it in, evaluate system B on same task T.
-Compare scores of system A and system B on task T.

�52



CS447: Natural Language Processing (J. Hockenmaier)

Originally developed for speech recognition. 

How much does the predicted sequence of words 
differ from the actual sequence of words in the correct 
transcript? 
 
 

Insertions:       “eat lunch” → “eat a lunch”
Deletions:        “see a movie”   → “see movie”
Substitutions: “drink ice tea”→ “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words in transcript

�53



CS447: Natural Language Processing (J. Hockenmaier)

To recap….

�54



CS447: Natural Language Processing (J. Hockenmaier)

Today’s key concepts
N-gram language models

Independence assumptions
Getting from n-grams to a distribution over a language
Relative frequency (maximum likelihood) estimation
Smoothing
Intrinsic evaluation: Perplexity, 
Extrinsic evaluation: WER

Today’s reading: 
Chapter 3 (3rd Edition) 

Next lecture: Basic intro to machine learning for NLP

�55


