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Today

1. Video Magnification

– Lagrangian (point tracking) approach

– Eulerian (signal within a pixel) approach

2. Video Microphone



Imperceptible Motions and Changes

[Liu et al. 2005] [Wu et al. 2012]



MAGNIFIED Imperceptible Motions and Changes

[Wu et al. 2012][Liu et al. 2005]



Motion Magnification

Goal: exaggerate selected motions

Ideas?



Approach 1: Point Tracking

Motion Magnification (SIGGRAPH 2005)

Ce Liu   Antonio Torralba William T. Freeman   Frédo Durand   Edward 

H. Adelson

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Following slides based on SG 2005 presentation: 

http://people.csail.mit.edu/celiu/motionmag/motionmag.html

http://people.csail.mit.edu/celiu/motionmag/motionmag.html


Naïve Approach

• Magnify the estimated optical flow field

• Rendering by warping

Original sequence Magnified by naïve approach



Tracking-based Motion Magnification

+ +

++ +

Liu et al. Motion Magnification, 2005
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Robust Video Registration

• Find feature points with Harris corner detector on the reference 
frame

• Track feature points 

• Select a set of robust feature points with inlier and outlier 
estimation (most from the rigid background)

• Warp each frame to the reference frame with a global affine 
transform



Feature tracking trick 1: Adaptive Region of 
Support

• SSD patch matching search

• Learn adaptive region of support using expectation-
maximization (EM) algorithm

region of 
support

Confused by 

occlusion !

time

time



Feature tracking trick 2: trajectory pruning

• Tracking with adaptive region of support

• Outlier detection and removal by interpolation

Nonsense at full occlusion!

time

inlier 

probability Outliers



Without adaptive region of support and trajectory pruningWith adaptive region of support and trajectory pruning

Comparison 



Cluster trajectories based on normalized 
complex correlation

• The similarity metric 
should be independent of 
phase and magnitude

• Normalized complex 
correlation






tt

t

tCtCtCtC

tCtC
CCS

)()()()(

|)()(|
),(

2211

2

21

21



Spectral Clustering

Affinity matrix Clustering Reordering of affinity matrix

Two clustersTrajectory
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Clustering Results



Flow vectors of 

clustered sparse 

feature points

Dense optical flow 

field of cluster 1 

(leaves)

Dense optical flow 

field of cluster 2 

(swing)

From Sparse Feature Points to Dense 
Optical Flow Field

Cluster 1: leaves

Cluster 2: swing

Interpolate dense 
optical flow field using 
locally weighted linear 
regression 



Motion Layer Assignment

• Assign each pixel to a motion cluster layer, using four cues:

– Motion likelihood—consistency of pixel’s intensity if it moves with the 

motion of a given layer (dense optical flow field)

– Color likelihood—consistency of the color in a layer

– Spatial connectivity—adjacent pixels favored to belong the same group

– Temporal coherence—label assignment stays constant over time

• Energy minimization using graph cuts



Segmentation Results

Two additional layers: static background and outlier



Layered Motion Representation for Motion 
Processing

Background Layer 1 Layer 2

Layer mask

Occluding layers

Appearance for each 

layer before texture 

filling-in

Appearance for each 

layer after texture 

filling-in

Appearance for each 

layer after user 

editing







Discussion of point tracking approach

• Good: applies to any motion

• Bad: requires accurate point tracking, 
clustering and texture synthesis, so likely to 
fail



Eulerian Video Magnification for Revealing Subtle Changes in the World
Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Fredo Durand, William T. Freeman

ACM Transactions on Graphics, Volume 31, Number 4 (Proc. SIGGRAPH) 2012

Following slides based on Siggraph presentations:

http://people.csail.mit.edu/mrub/vidmag/

http://people.csail.mit.edu/nwadhwa/phase-video/

Approach 2: pixelwise processing

Phase-based Video Motion Processing
Neal Wadhwa, Michael Rubinstein, Fredo Durand, William T. Freeman

ACM Transactions on Graphics, Volume 32, Number 4 (Proc. SIGGRAPH) 2013

http://people.csail.mit.edu/mrub/vidmag/
http://people.csail.mit.edu/nwadhwa/phase-video/


Lagrangian and Eulerian Perspectives: Fluid 
Dynamics

Lagrangian Eulerian
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Eulerian Perspective: Videos

• Each pixel is processed independently

• Treat each pixel as a time series and 
apply signal processing to it

y

x
time

Eulerian
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Method Overview
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Laplacian

Pyramid 

Bandpass filter 

intensity at each 

pixel over time

Amplify 

bandpassed

signal and add 

back to original



Subtle Color Variations

• The face gets slightly redder when blood flows

• Unfortunately usually below the per pixel 
noise level

Input frame Luminance trace (zero 

mean)
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Subtle Color Variations

1.  Average spatially to overcome sensor and 
quantization noise

Input frame

Spatially averaged luminance trace

Luminance trace (zero 

mean)pulses

28



Amplifying Subtle Color Variations

2.  Filter temporally to extract the signal of 
interest

Temporally bandpassed trace

⊗

Temporal filter

=

Spatially averaged luminance trace
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Color Amplification Results

Source Color-amplified (x100)

0.83-1 Hz (50-60 bpm)

30



Heart Rate Extraction

Temporally bandpassed trace

(one pixel)

Peak detection Pulse locations

31



Heart Rate Extraction

2.33-2.67 Hz (140-160 bpm)Thanks to Dr. Donna Brezinski and the Winchester Hospital staff

EKG
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Why It Amplifies Motion
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Relating Temporal and Spatial Changes
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Translation

𝟏 + 𝜶 𝜹

(1 + 𝑎)𝐵(𝑥, 𝑡)

𝟏 + 𝜶 𝑩 𝒙, 𝒕 ≈ 𝟏 + 𝜶 𝜹(𝒕)𝑰′ 𝒙, 𝒕
(1st order Taylor expansion)

𝐼’(𝑥, 𝑡)

𝑩 𝒙, 𝒕 ≈ 𝜹(𝒕)𝑰′ 𝒙, 𝒕
(1st order Taylor expansion)



Relating Temporal and Spatial Changes
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Signal at time 𝑡

Signal at time 𝑡 + 1

Motion-magnified

Courtesy of Lili Sun



Synthetic 2D Example

Source Motion-magnified
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Selective Motion Magnification

Source

(Single video with 4 blobs)

Temporal filter:

1-3 Hz

Motion-magnified (2 Hz)

7 Hz

3 Hz

5 Hz

2 Hz

7 Hz

3 Hz

5 Hz

2 Hz
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Selective Motion Magnification

Motion-magnified (3 Hz)

Temporal filter:

2-4 Hz

7 Hz

3 Hz

5 Hz

2 Hz

7 Hz

3 Hz

5 Hz

2 Hz

Source

(Single video with 4 blobs)
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Selective Motion Magnification

Motion-magnified (5 Hz)

Temporal filter:

4-6 Hz

7 Hz

3 Hz

5 Hz

2 Hz

7 Hz

3 Hz

5 Hz

2 Hz

Source

(Single video with 4 blobs)
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Selective Motion Magnification

Motion-magnified (7 Hz)

Temporal filter:

6-8 Hz

7 Hz

3 Hz

5 Hz

2 Hz

7 Hz

3 Hz

5 Hz

2 Hz

Source

(Single video with 4 blobs)
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When Does It Break?
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Space

Signal at time 𝑡

Signal at time 𝑡 + 1

Motion-magnified

0

255

Clipped

Clipped
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Motion Magnification Artifacts

Source Motion-magnified (3.6-6.2 Hz, x60)

Artifact

Artifact
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Scale-varying Amplification

• The amplification is more accurate for low spatial frequencies
– Images are smoother

– Motions are smaller

• Use the desired 𝛼 for lower spatial frequencies, and attenuate 
for the higher spatial frequencies

43

Spatial wavelength (2𝜋/freq)

Amplification

Desired amplificationLinear

falloff



Motion Magnification Results

Source Motion-magnified  (0.4-3 Hz, x10)
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Motion Magnification

Source Motion-magnified  (0.4-3 Hz, x10)

Radial

Ulnar
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Discussion of pixelwise intensity 
amplification approach

• Good: 
– Does not require explicit motion estimation or 

texture synthesis (robust)

– Very fast (real time)

• Bad:
– Can only handle very small motions

– Amplifies noise



Limitations of Linear Motion Processing
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Space 

(𝑥)

• Noise amplified with signal

Signal at time 𝑡 + Δ𝑡

Motion-magnified

𝜕𝑥
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𝜕𝑓
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Limitations of Linear Motion Processing

Source Linear

SIGGRAPH’12
Phase-based

SIGGRAPH’13

Overshoot

Overshoot



Eulerian approach part 2: shift phase 
instead of amplifying intensity

Translation in space is equivalent to a shift in phase

• Linear Motion Processing

– Assumes images are locally linear

– Translate by changing intensities

• Phase-Based Motion Processing

– Represents images as collection of local sinusoids

– Translate by shifting phase

𝜕𝑥

𝜕𝑡

𝜕𝑓

𝜕𝑡

𝜕𝑓

𝜕𝑥



Linear vs. Phase-Based Motion Processing

Source Linear

SIGGRAPH’12
Phase-based

SIGGRAPH’13



Time (t)

Phase over Time
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Phase over Time

Time (t)

Phase over TimeInput Motion-magnified
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2D Complex Steerable Pyramid

Filter Bank

Orientation 2

Real Imag
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Phase over Time

Amplitude

Sub-bands

Filter Bank
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New Phase-Based Pipeline

Amplitude

Sub-bands

Filter Bank

Complex steerable 

pyramid

[Simoncelli et al. 1992]

Bandpassed

Phase

Orientation 2

Real Imag
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Improvement #1: Less Noise 

Noise amplified Noise translated

Source (IID 

Noise, std=0.1)

Linear [Wu et al. 

2012] (x50)
Phase-based 

(x50)



Improvement #2: More Amplification

Amplification factor   Motion in the sequence

Range of linear method:

Range of phase-based method:

4 times the

amplification!



Attenuated

• Local phase can move image features, but only 
within the filter window

Limits of Phase Based Magnification

Amplification factor 



Comparison with [Wu et al. 2012]

Wu et al. 2012 Phase-Based (this paper)



Eye Movements

Source (500FPS) Motion magnified x150 (30-50 Hz)



Expressions

Low frequency motions Mid-range frequency motions

Source



Ground Truth Validation

• Induce motion 
(with hammer)

• Record with 
accelerometer

AccelerometerHammer Hit



Ground Truth Validation



Motion Attenuation

Source Turbulence Removed

Sequence courtesy Vimeo user Vincent Laforet



Car Engine

Source



Car Engine

22Hz Magnified



Car Engine

Source



Car Engine

22Hz Magnified



Neck Skin Vibrations

Frequency (Hz)
0 500 1000
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Source (2 KHz)

Frequency (Hz)
0 500 1000

P
o
w

e
r

Source (2 KHz) 100 Hz Amplified x100

Fundamental 

frequency: ~100Hz



Source (2 KHz) Amplified (x100)



Discussion of pixelwise phase 
magnification approach

• Good: 
– Does not require explicit motion estimation
– Produces more direct translations (instead of perceived 

motion)
– Does not amplify noise

• Bad:
– Limited in range of amplication (compared to pointwise

approach)
– May have difficulty with non-periodic motion and large 

motions



Non-periodic Motions and Large Motions

Source (300 FPS) Motion Magnification x50 Motion Magnification x50

Large Motions Unmagnified

Non-periodic motion



The Visual Microphone:
Passive Recovery of Sound from Video

Abe Davis    Michael Rubinstein    Neal Wadhwa

Gautham Mysore    Fredo Durand    William T. 
Freeman

(slides adopted from Siggraph presentation)



Remote Sound Recovery



Sound and Motion

Source: mediacollege.com
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Processing

• Extract local motion signals

• Average and Align

• Post-process

80



Some materials are better microphones 
than others
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Sound Recovered from Video

Source sound in the room
Waveform Spectrogram

Recovered sound

2200Hz video



Sound Recovered from Video

Source sound in the room
Waveform Spectrogram

2200Hz video

Recovered sound



Sound Recovered from Video

20 kHz video

Source sound in the room
Waveform Spectrogram

(small patch on the chip bag)
Recovered sound
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Rolling Shutter

Artifacts

references
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https://www.flickr.com/photos/sorenragsdale/3904937619/

http://www.flickr.com/photos/boo66/5730668979/

https://www.flickr.com/photos/sorenragsdale/3904937619/
http://www.flickr.com/photos/boo66/5730668979/


Rolling Shutter
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Rolling Shutter
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Rolling Shutter
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Input video (60 fps)

Input

Recovered Sound



Rolling Shutter
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Input video (60 fps)

Input

Recovered Sound

400Hz!



Summary

• Several ways to magnify motion

– Directly measure and exaggerate point motions

– Amplify intensity changes after temporal filtering 
(creating apparent motion)

– Amplify local phase variations after temporal 
filtering

• Micro-motion estimates can be used to 
measure sound



Next week

• Final class

– A few examples of cutting edge applications, inc.
deep network based approaches

– Where to learn more

– Course feedback (important for me)


