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Texture Synthesis and Hole-Filling

Computational Photography

Derek Hoiem, University of lllinois



Project 1

* Results page is up

* Aim to have it graded within this week



Next section: The digital canvas

Cutting and pasting objects,
filling holes, and blending

Image warping and object
morphing




Today’s Class

* Texture synthesis and hole-filling




Texture

* Texture depicts spatially repeating patterns
e Textures appear naturally and frequently

radishes rocks

Many slides from James Hays



Texture Synthesis

e Goal of Texture Synthesis: create new samples of
a given texture

 Many applications: virtual environments, hole-
filling, texturing surfaces




The Challenge

regular

near-regular

irregular

near-stochastic

stochastic

Need to model the whole spectrum: from
repeated to stochastic texture



One idea: Build Probability Distributions

Basic idea

1. Compute statistics of input texture (e.g., histogram of edge
filter responses)

2. Generate a new texture that keeps those same statistics

 D.J.Heeger andJ. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
’95.

 E.P.Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet
coefficient magnitudes. In ICIP 1998.



One idea: Build Probability Distributions

But it (usually) doesn’t work

* Probability distributions are hard to model weII

Input

Synthesized




Another idea: Sample from the image

non-parametric

sampling -
<y M

Eisrs) et
Input image

Synthesizing a pixel

* Assuming Markov property, compute P(p|N(p))

— Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at random

Efros and Leung 1999 SIGGRAPH



ldea from Shannon (Information Theory)

* Generate English-sounding sentences by

modeling the probability of each word given
the previous words (n-grams)

e Large “n” will give more structured sentences

“| spent an interesting evening recently
with a grain of salt.”

(example from fake single.net user Mark V_Shaney)



http://en.wikipedia.org/wiki/Mark_V_Shaney

Details

* How to match patches?

— Gaussian-weighted SSD (more emphasis on nearby
pixels)

 What order to fill in new pixels?

— “Onion skin” order: pixels with most neighbors are
synthesized first

— To synthesize from scratch, start with a randomly
selected small patch from the source texture

* How big should the patches be?



Size of Neighborhood Window
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Texture synthesis algorithm

* While image not filled

1. Get unfilled pixels with filled neighbors, sorted
by number of filled neighbors

2. For each pixel, get top N matches based on
visible neighbors

- Patch Distance: Gaussian-weighted SSD

3. Randomly select one of the matches and copy
pixel from it



Synthesis Results

french canvas rafia weave




More Results

white bread brick wall




Homage to Shannon
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Hole Filling



Extrapolation




In-painting natural scenes

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Key idea: Filling order matters

In-painting Result

A A

Image with Hole Raster-Scan Order Onion-Peel Gradient-Sensitive
(Concentric Layers) Order

/' \

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Filling order

Fill a pixel that:
1. Is surrounded by other known pixels
2. Is a continuation of a strong gradient or edge

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Original With Hole Onion-Ring Fill  Criminisi

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Concentric Layers Gradient Sensitive



Summary

 The Efros & Leung texture synthesis algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow



Image Quilting [Efros & Freeman 2001]

r L | w
non-parametric
sampling |
<) % IE

==
Input image

Synthesizing a block
* QObservation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

 Much faster: synthesize all pixels in a block at once



block

Input texture

B1 B2 B1 | | | B2 B1 | - | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlapping blocks vertical boundary

overlap error min. error boundary



Solving for Minimum Cut Path

Cost of a cut through this pixel

& ® &
ORORO
ORORO

ORORO



Solving for Minimum Cut Path

prev =rl cost =6 cost=5
cost=4
JORONIONO
/
\\ ~ /// ///
~ prev =rl , P

r3



Solving for Minimum Cut Path
Best Path




Solving for Minimum Cut Path

Region 1

Region 2

Mask Based on Best Path
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Political Texture Synthesis!

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling

of the
duplication
of soldiers.

Original photograph

.




Texture Transfer

* Try to explain one object with bits and
pieces of another object:




Texture Transfer

Constraint

Texture sample



Texture Transfer

Take the texture from one
iImage and “paint” it onto
another object

Same as texture synthesis, except an additional
constraint:

1. Consistency of texture
2. Patches from texture should correspond to patches from constraint in
some way. Typical example: blur luminance, use SSD for distance



(R
Bok
&
L

source texture

texture transfer result

correspondence maps
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Making sacred toast

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/



Project 2: texture synthesis and transfer

https://courses.engr.illinois.edu
/cs445/fa2017/projects/quiltin
g/ComputationalPhotography
ProjectQuilting.html

Note: this is significantly
more challenging than the
first project
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Texture Synthesis and Transfer Recap

For each overlapping patch in the output image

1. Compute the cost to each patch in the sample

— Texture synthesis: this cost is the SSD (sum of square difference) of pixel values
in the overlapping portion of the existing output and sample

— Texture transfer: cost is & * SSDyperiap + (1 — @) * SSD¢ynsfer The latter
term enforces that the source and target correspondence patches should

match.
2. Select one sample patch that has a small cost
3. Find a cut through the left/top borders of the patch based on
overlapping region with existing output
— Use this cut to create a mask that specifies which pixels to copy from sample
patch
4. Copy masked pixels from sample image to corresponding pixel locations
in output image



PatchMatch

More efficient search: 4

1. Randomly initialize matches |

2. See if neighbor’s offsets are better / w

3. Randomly search a local window for AR
better matches &, L

4. Repeat 3, 4 across image several .
times (a) Initialization

(b) random (d) % iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

(a) originals

(c) I iteration

Reconstructing top-left image with patches from
bottom-left image

(a) input
y &£

(d) input

(g) same input

(b) Propagation

/D

(c) Search

(e) hole
-

(b) hole and guldes (c) completion result

(f) completion (close up)

(h) hole and guides (i) guided (close up)

Applications to hole-filling, retargeting;

Barnes et al. Siggraph 2009
http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php

constraints can guide search


http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

Related idea: Image Analogies

B B’
Image Analogies, Hertzmann et al. SG 2001



Image analogies

* Define a similarity between A and B

* For each patch in B:

— Find a matching patch in A, whose corresponding
A’ also fits in well with existing patches in B’

— Copy the patch in A’ to B’
e Algorithm is done iteratively, coarse-to-fine



Image-to-Image Translation with Conditional Adversarial Networks
https://phillipi.github.io/pix2pix/

Alexei A. Efros

Phillip Isola Jun-Yan Zhu Tinghui Zhou

Berkeley Al Research (BAIR) Laboratory
University of California, Berkeley

{isola, junyanz,tinghuiz,efros}@eecs.berkeley.edu

Learn to map from one image representation to another

Trained from input/output pairs
Patch memoaorization is implicit through learned representation
BW to Color

Labels to Street Scene Labels tO Facade

input output input output
Edges to Photo
a8
|
L)
IJ"F— Ik—‘— ﬁjk |
I‘ |?| II “ Jl X'|
f ____,\ ; \
| Y
l |
r"'_ R 'V'u
input output input output



https://phillipi.github.io/pix2pix/

Learning to synthesize

Positive examples Negative examples

Real or fake pair? Real or fake pair?

Scores NxN patches for
I |
; "

G ¢+ Thereis also an
f objective to produce the

: . ;" paired image with a L1
G tries to synthesize fake g loss
images that fool D

D tries to identify the fakes




Demos

https://affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/

Things to remember

e Texture synthesis and hole-filling can be
thought of as a form of probabilistic
hallucination

* Simple, similarity-based matching is a powerful
tool
— Synthesis
— Hole-filling
— Transfer
— Artistic filtering
— Super-resolution
— Recognition, etc.

* Key is how to define similarity and efficiently
find neighbors

* New methods learn patch/image
representations to create more flexible
synthesis, so that similarity function and
“neighbors” are imiplicit




Next class

* Cutting and seam finding






