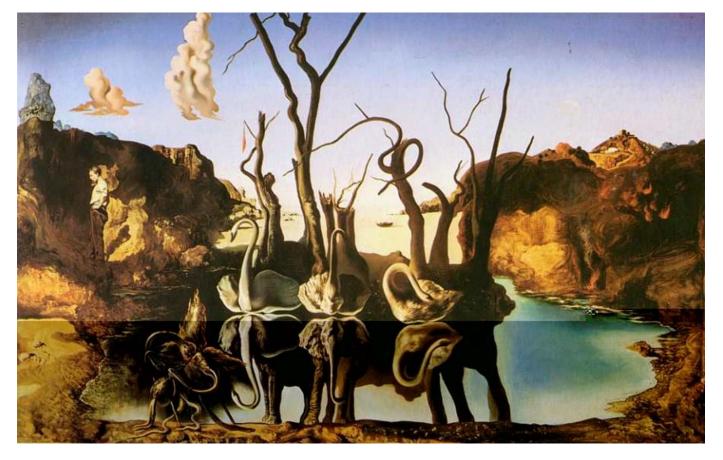
Object Recognition and Augmented Reality



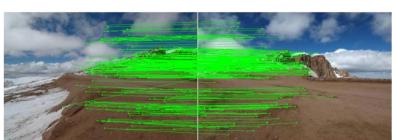
Dali, Swans Reflecting Elephants

Computational Photography
Derek Hoiem, University of Illinois

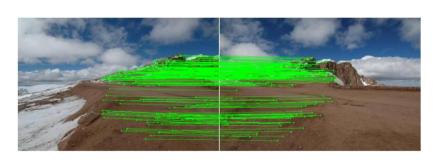
Last class: Image Stitching

1. Detect keypoints

2. Match keypoints



3. Use RANSAC to estimate homography



4. Project onto a surface and blend

Project 5: due Nov 11

https://courses.engr.illinois.edu/cs445/fa2015/projects/video/ComputationalPhotograph_ProjectVideo.html

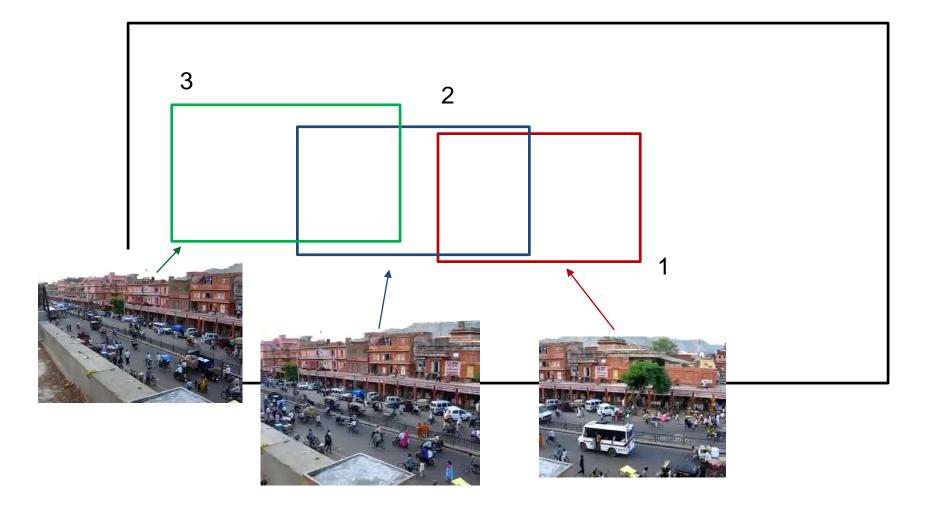
- 1. Align frames to a central frame
- 2. Identify background pixels on panorama
- 3. Map background pixels back to videos
- 4. Identify and display foreground pixels

Lots of possible extensions for extra credit

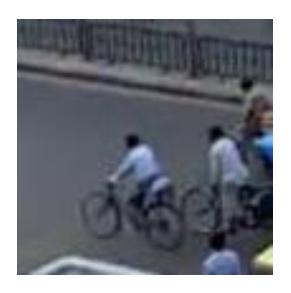
Aligning frames

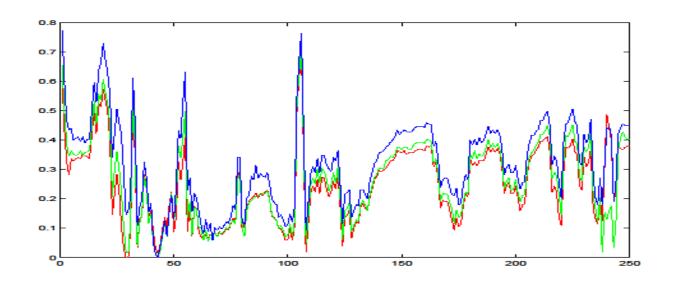
$$x_1 = H_{21}x_2$$

 $x_2 = H_{32}x_3$ $x_1 = ?x_3$

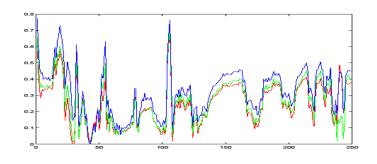


Background identification





Background identification



Idea 1: take average (mean) pixel

- Not bad but averages over outliers

mean

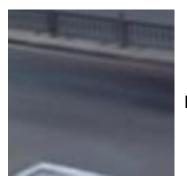
Idea 2: take mode (most common) pixel

- Can ignore outliers if background shows more than any other single color

mode

Idea 3: take median pixel

- Can ignore outliers if background shows at least 50% of time, or outliers tend to be well-distributed



median

Identifying foreground

1. Simple method: foreground pixels are some distance away from background

- Another method: count times that each color is observed and assign unlikely colors to foreground
 - Can work for repetitive motion, like a tree swaying in the breeze

Augmented reality

- Insert and/or interact with object in scene
 - Project by Karen Liu
 - Responsive characters in AR
 - KinectFusion

- Overlay information on a display
 - Tagging reality
 - HoloLens
 - Google goggles

Adding fake objects to real video

Approach

- Recognize and/or track points that give you a coordinate frame
- 2. Apply homography (flat texture) or perspective projection (3D model) to put object into scene

Main challenge: dealing with lighting, shadows, occlusion

Information overlay

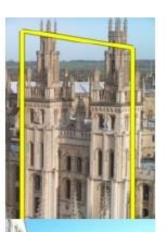
Approach

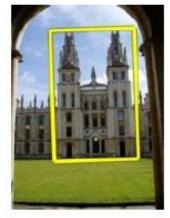
- 1. Recognize object that you've seen before
- 2. Possibly, compute its pose
- 3. Retrieve info and overlay

Main challenge: how to match reliably and efficiently?

Today

How to quickly find images in a large database that match a given image region?





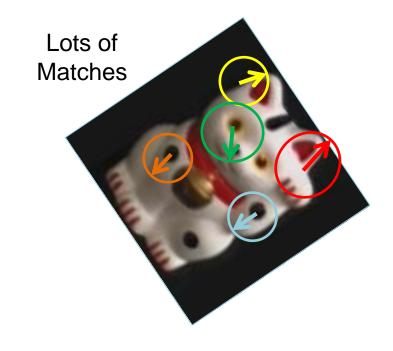
Let's start with interest points



Compute interest points (or keypoints) for every image in the database and the query

Simple idea

See how many keypoints are close to keypoints in each other image



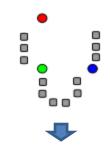
Few or No Matches

But this will be really, really slow!

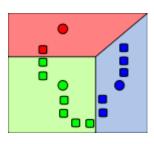
Cluster the keypoint descriptors

K-means algorithm

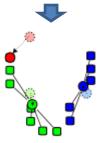
1. Randomly select K centers



2. Assign each point to nearest center



3. Compute new center (mean) for each cluster

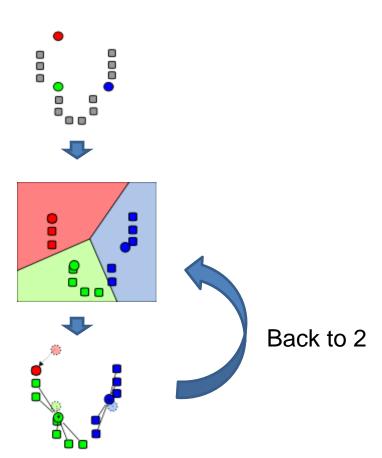


K-means algorithm

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster



Kmeans: Matlab code

```
function C = kmeans(X, K)
% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);
lastAssignment = zeros(N, 1);
while true
  % Assign each point to nearest cluster center
 bestAssignment = zeros(N, 1);
 mindist = Inf*ones(N, 1);
  for k = 1:K
    for n = 1:N
      dist = sum((X(n, :) - C(k, :)).^2);
      if dist < mindist(n)</pre>
       mindist(n) = dist;
       bestAssignment(n) = k;
      end
    end
  end
  % break if assignment is unchanged
  if all(bestAssignment==lastAssignment), break; end;
  lastAssignment = bestAssignmnet;
  % Assign each cluster center to mean of points within it
  for k = 1:K
    C(k, :) = mean(X(bestAssignment==k, :));
  end
end
```

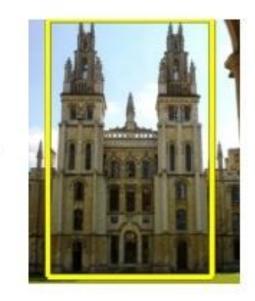
K-means Demo

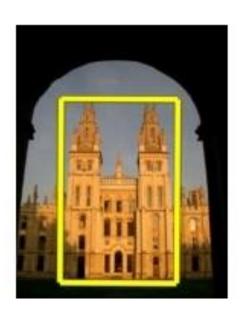
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
 - What does this buy us?
 - Each descriptor was 128 dimensional floating point, now is 1 integer (easy to match!)
 - Is there a catch?
 - Need a lot of clusters (e.g., 1 million) if we want points in the same cluster to be very similar
 - Points that really are similar might end up in different clusters

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"
- An image is a good match if it has a lot of the same visual words as the query region





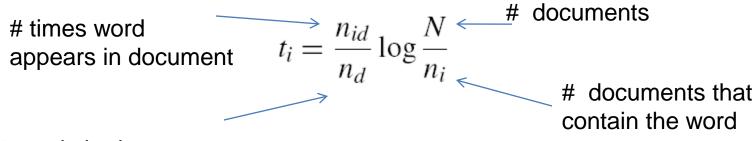
Naïve matching is still too slow

 Imagine matching 1,000,000 images, each with 1,000 keypoints

Key Idea 2: Inverse document file

- Like a book index: keep a list of all the words (keypoints) and all the pages (images) that contain them.
- Rank database images based on tf-idf measure.

tf-idf: Term Frequency – Inverse Document Frequency



words in document

Fast visual search

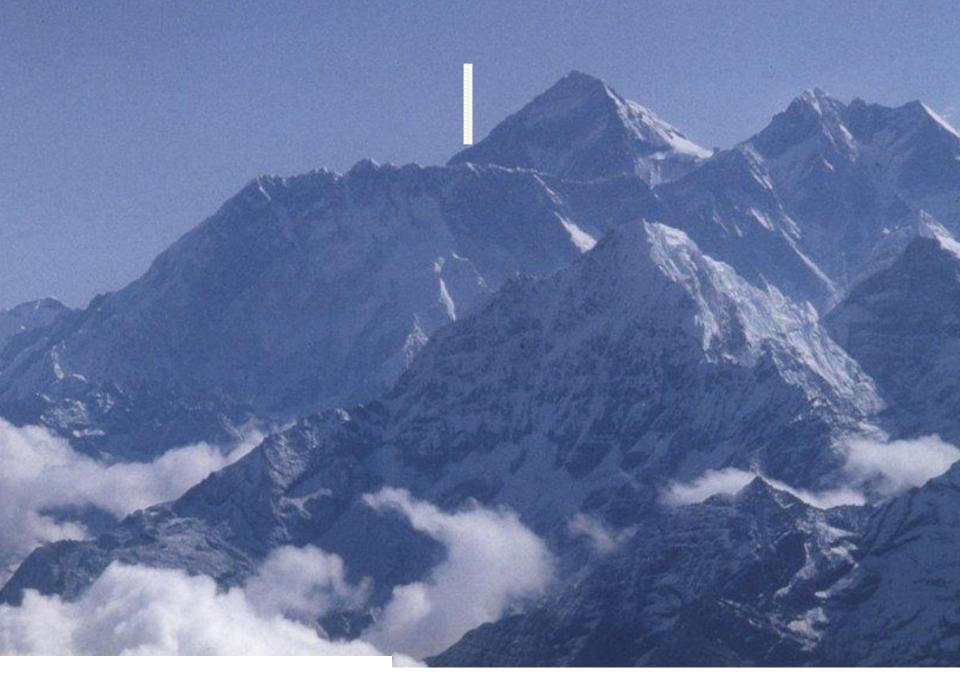
[&]quot;Video Google", Sivic and Zisserman, ICCV 2003

[&]quot;Scalable Recognition with a Vocabulary Tree", Nister and Stewenius, CVPR 2006.

110,000,000 Images in 5.8 Seconds

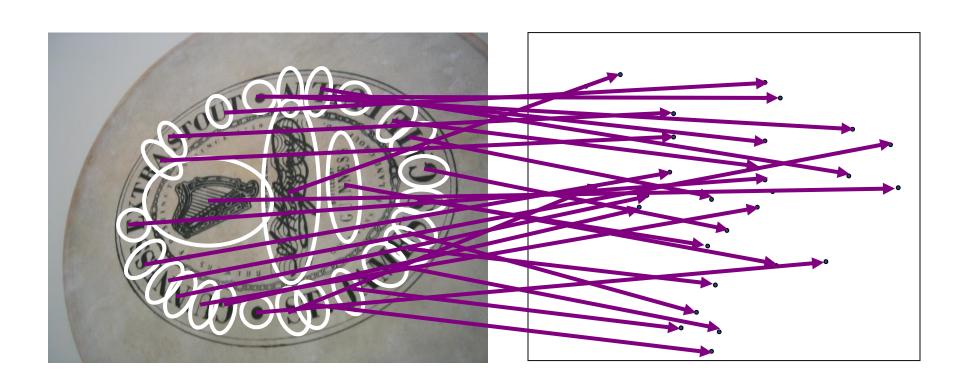
Slide Credit: Nister

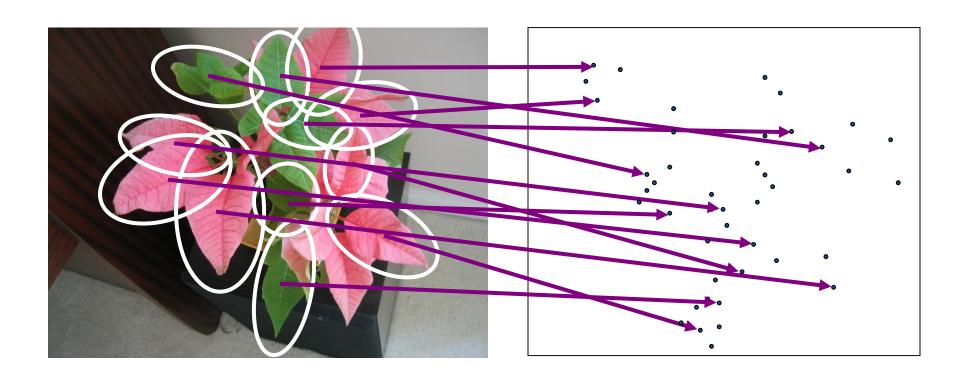
Slide Credit: Nister

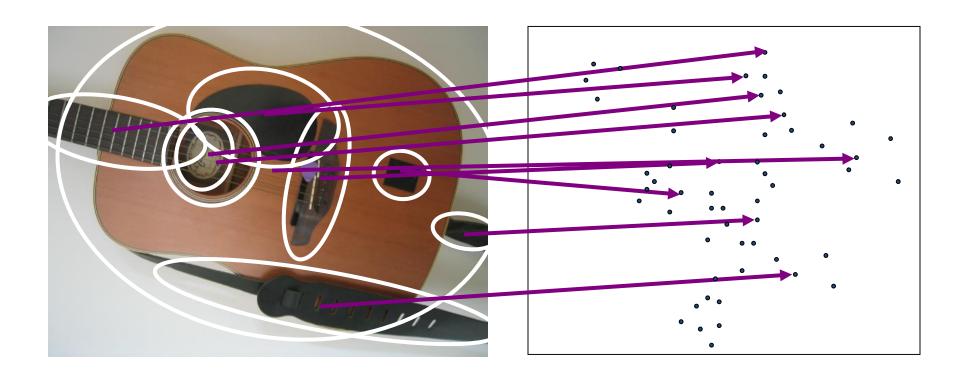


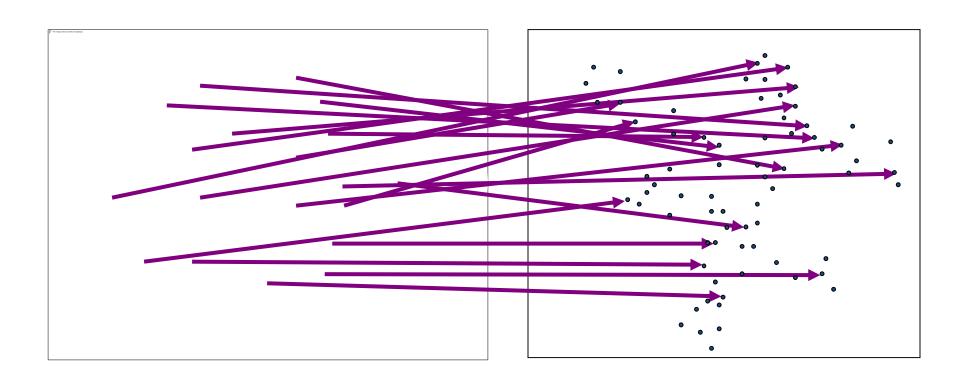
Slide Credit: Nister

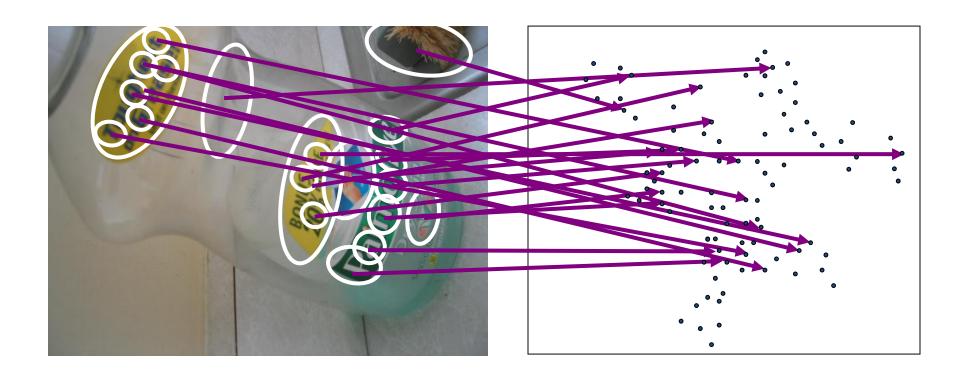
Recognition with K-tree

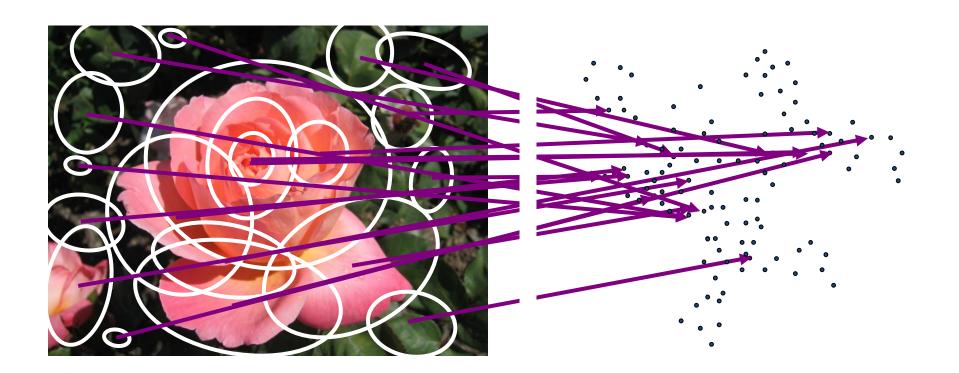


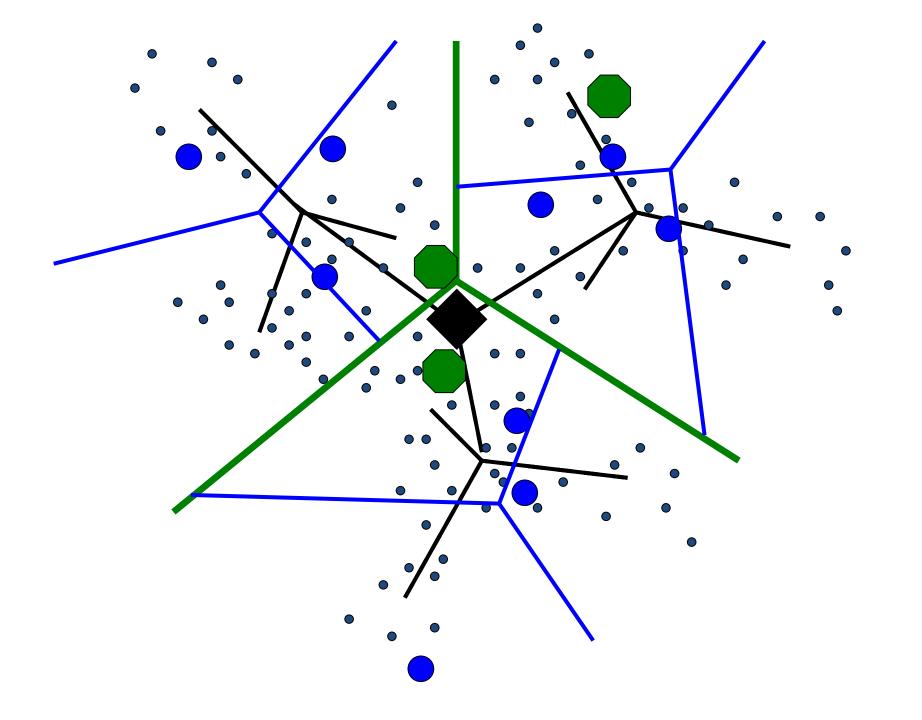


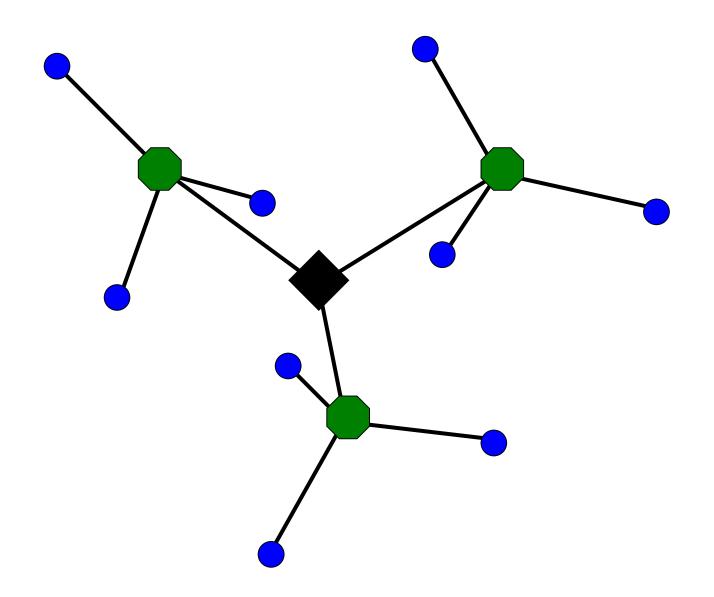


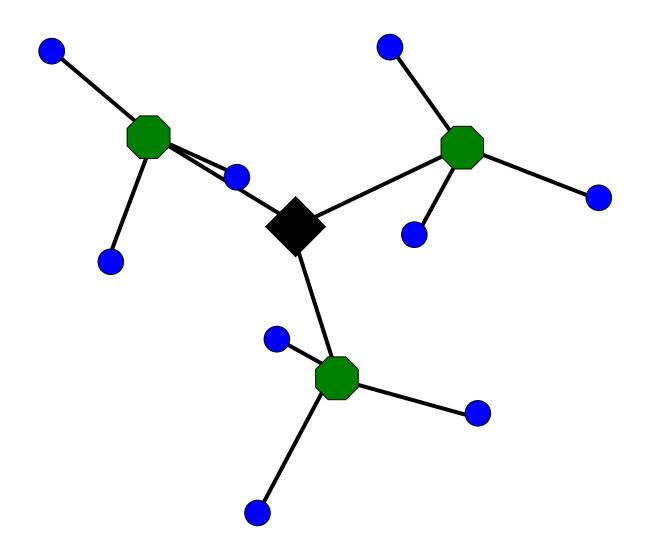


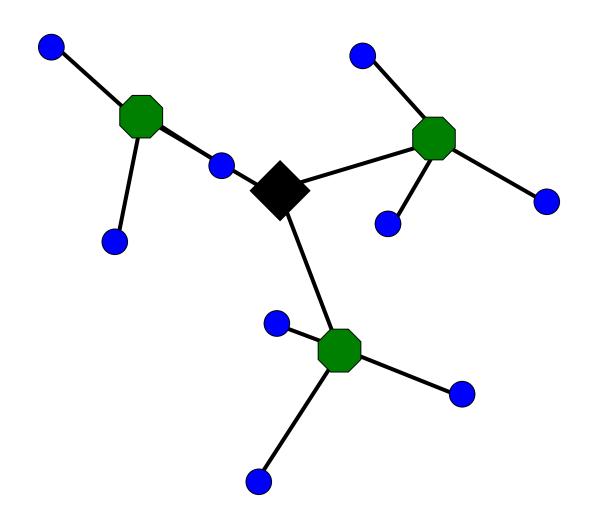


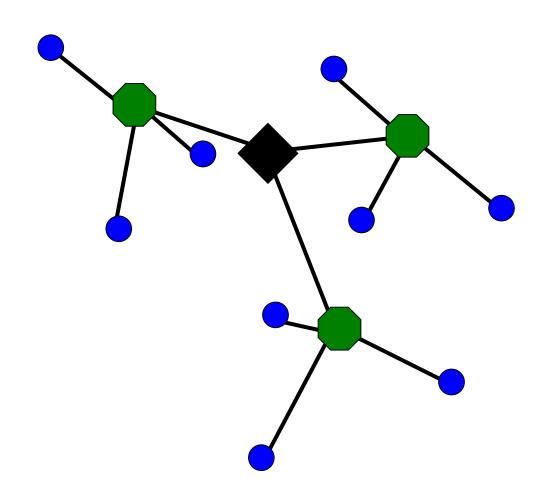


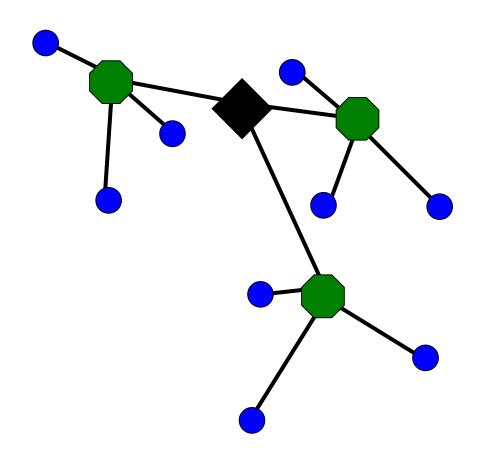


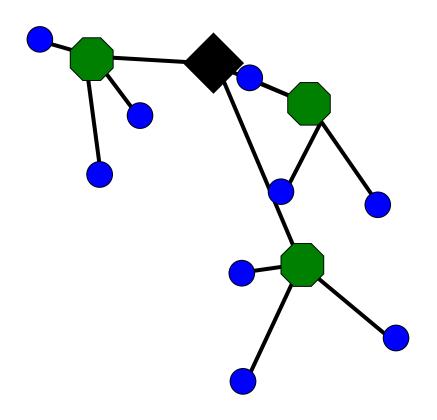


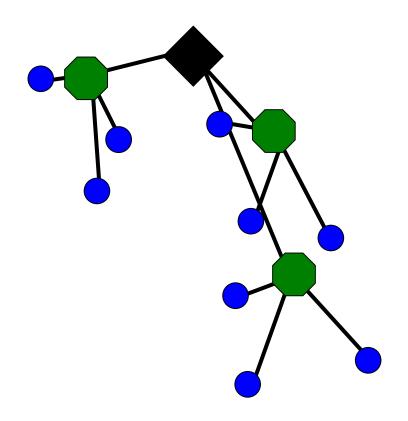


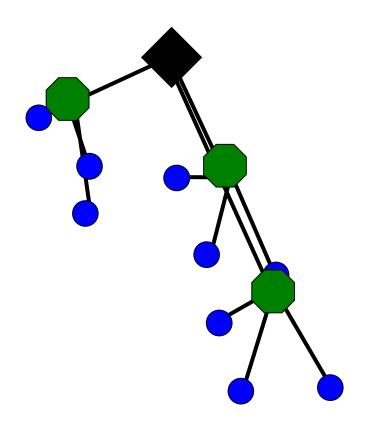


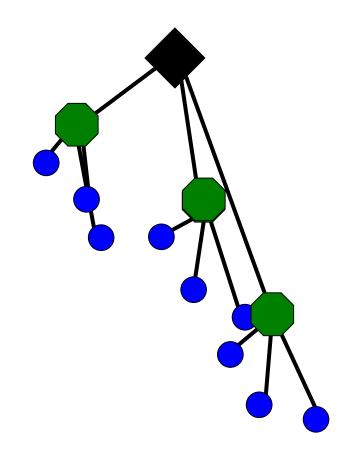


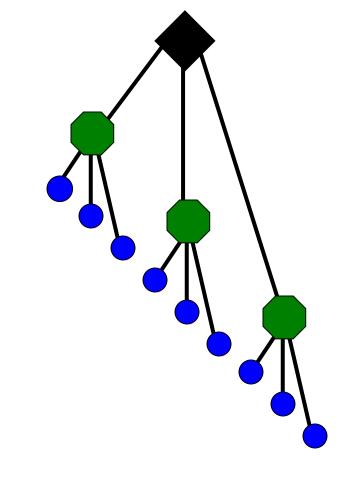


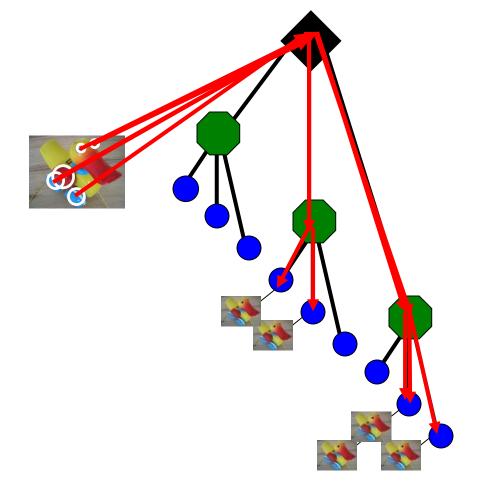


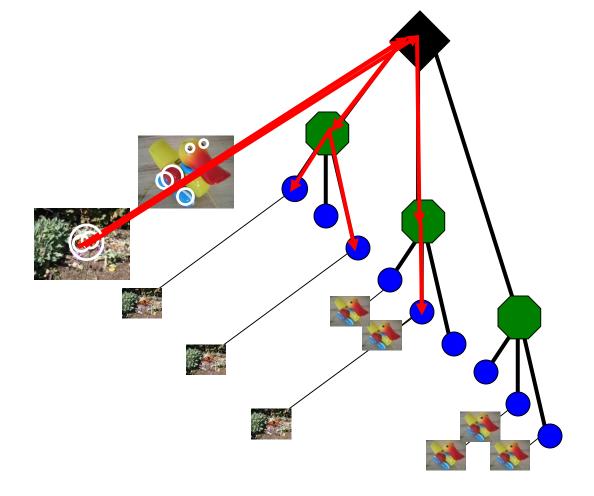


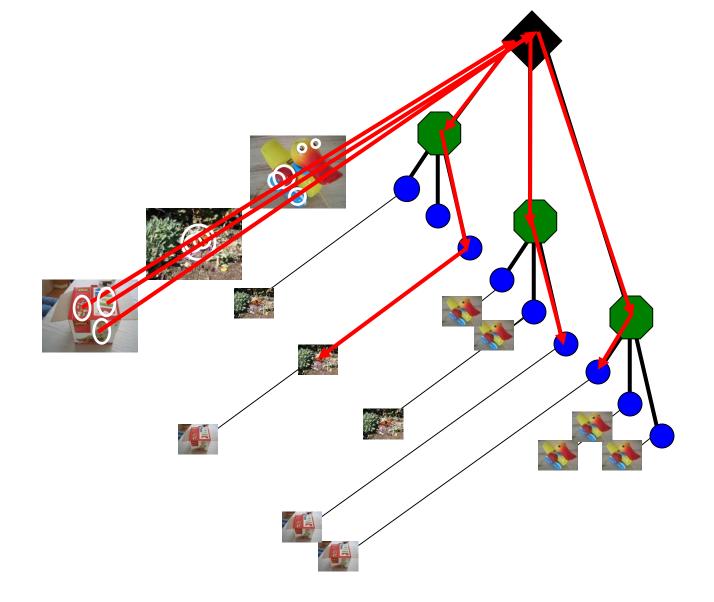


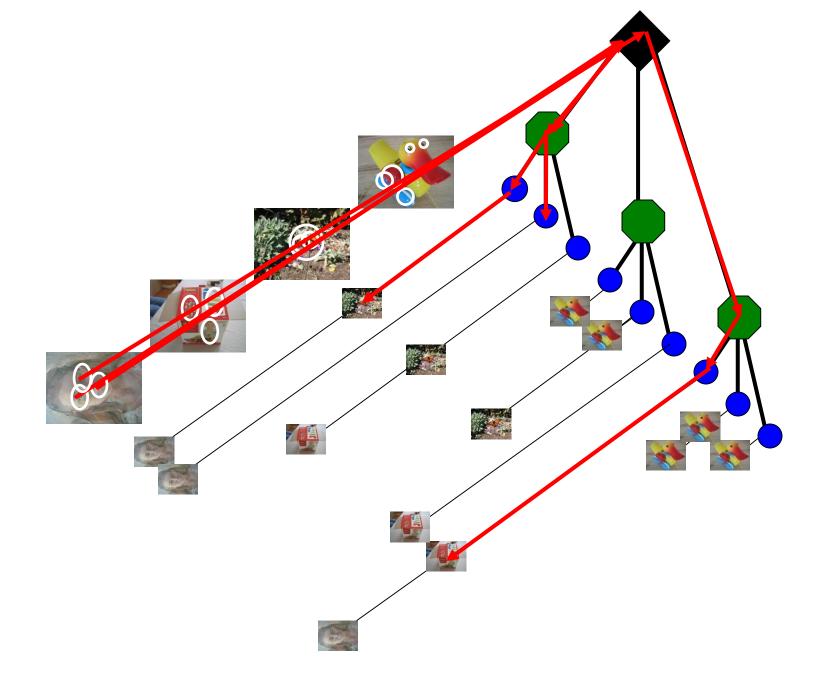


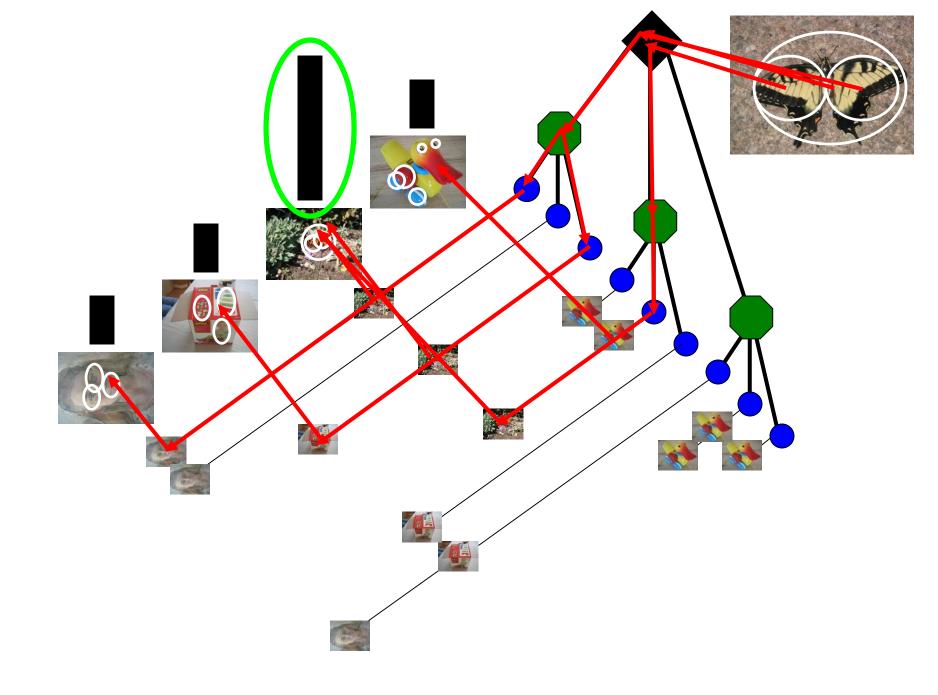




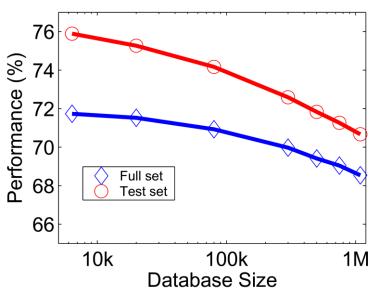








Performance



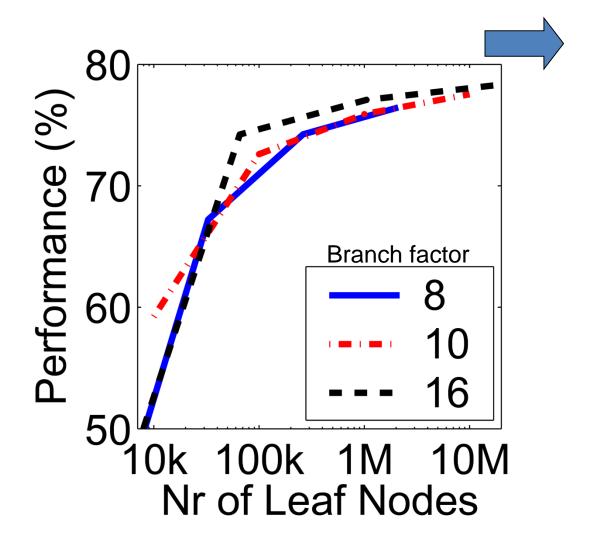
ImageSearch at the VizCentre

New query: Browse... Send File
File is 500x320

Top n results of your query.

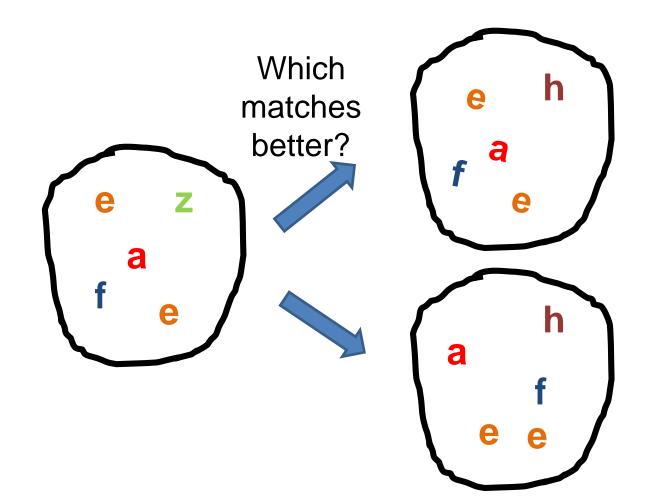
bourne/im1000043322.pgm bourne/im1000043323.pgm bourne/im1000043326.pgm bourne/im1000043327.pgm

Improves Speed



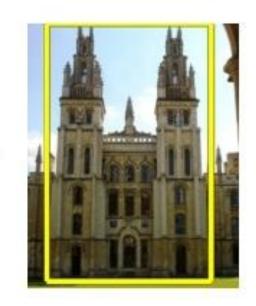
Can we be more accurate?

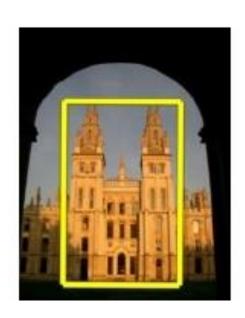
So far, we treat each image as containing a "bag of words", with no spatial information



Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information





Real objects have consistent geometry

Final key idea: geometric verification

 Goal: Given a set of possible keypoint matches, figure out which ones are geometrically consistent

How can we do this?

Final key idea: geometric verification

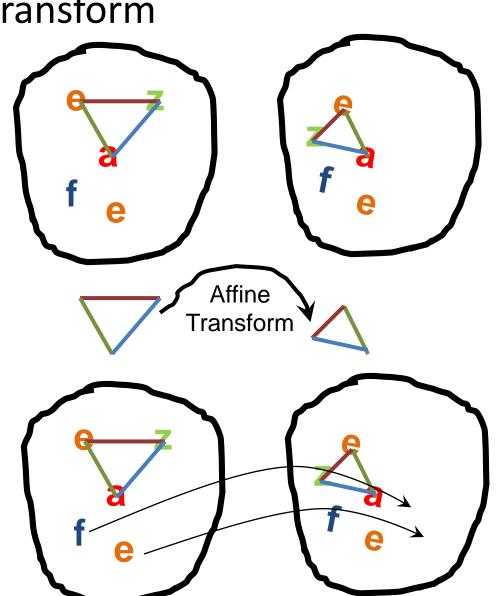
RANSAC for affine transform

Repeat N times:

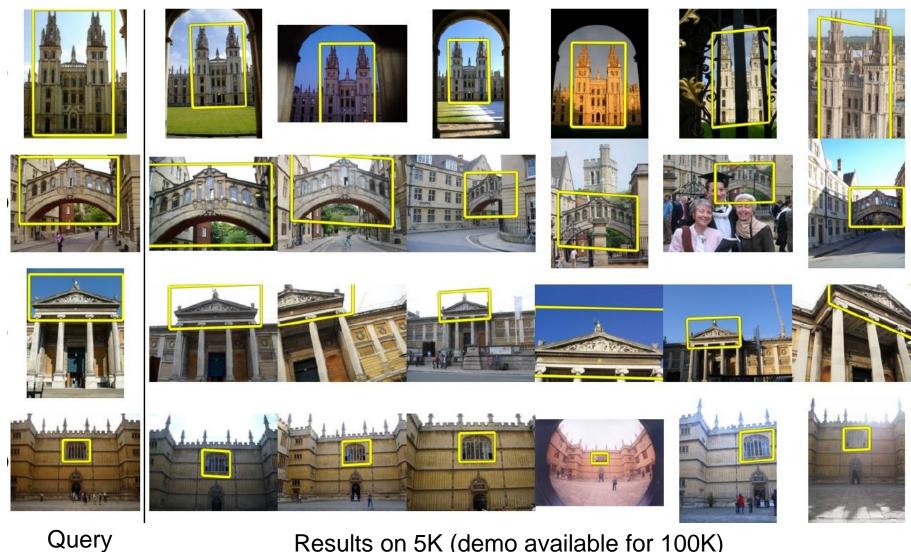
Randomly choose 3 matching pairs

Estimate transformation

Predict remaining points and count "inliers"



Application: Large-Scale Retrieval



Results on 5K (demo available for 100K)

K. Grauman, B. Leibe

[Philbin CVPR⁶07]

Application: Image Auto-Annotation

Right: closest match from Flickr

Example Applications

Mobile tourist guide
Self-localization
Object/building recognition
Photo/video augmentation

Video Google System

- 1. Collect all words within query region
- Inverted file index to find relevant frames
- 3. Compare word counts
- 4. Spatial verification

Sivic & Zisserman, ICCV 2003

Demo online at:
 http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

Query region

Retrieved frames

Summary: Uses of Interest Points

- Interest points can be detected reliably in different images at the same 3D location
 - DOG interest points are localized in x, y, scale

SIFT is robust to rotation and small deformation

- Interest points provide correspondence
 - For image stitching
 - For defining coordinate frames for object insertion
 - For object recognition and retrieval

Next class

- Opportunities of scale: stuff you can do with millions of images
 - Texture synthesis of large regions
 - Recover GPS coordinates
 - Etc.