Texture Synthesis and Hole-Filling

Computational Photography
Derek Hoiem, University of Illinois

Project 1

Results page is up

 Aim to have it graded in the next few days (but there are lots to grade)

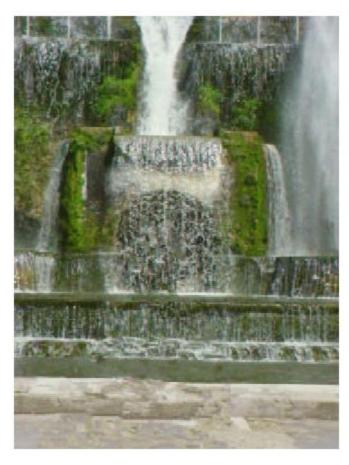
Next section: The digital canvas

Cutting and pasting objects, filling holes, and blending

Image warping and object morphing

Today's Class

Texture synthesis and hole-filling



Texture

- Texture depicts spatially repeating patterns
- Textures appear naturally and frequently

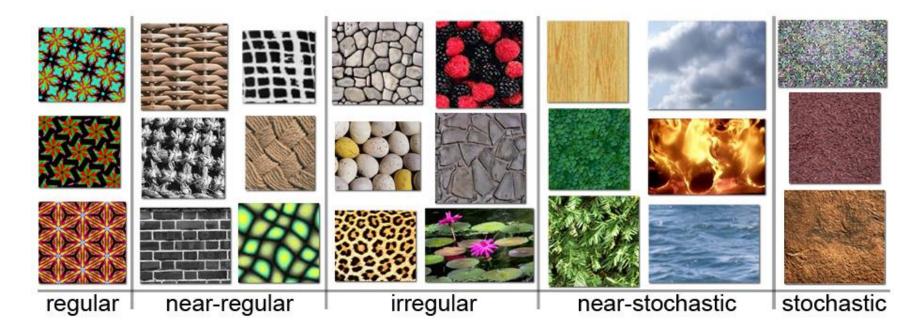
rocks

yogurt

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, holefilling, texturing surfaces

The Challenge



Need to model the whole spectrum: from repeated to stochastic texture

One idea: Build Probability Distributions

Basic idea

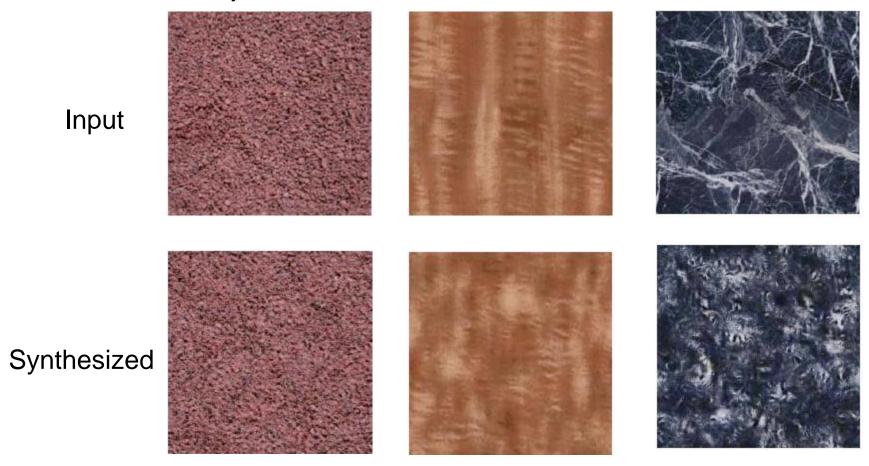
- 1. Compute statistics of input texture (e.g., histogram of edge filter responses)
- 2. Generate a new texture that keeps those same statistics

- D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH '95.
- E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet coefficient magnitudes. In *ICIP* 1998.

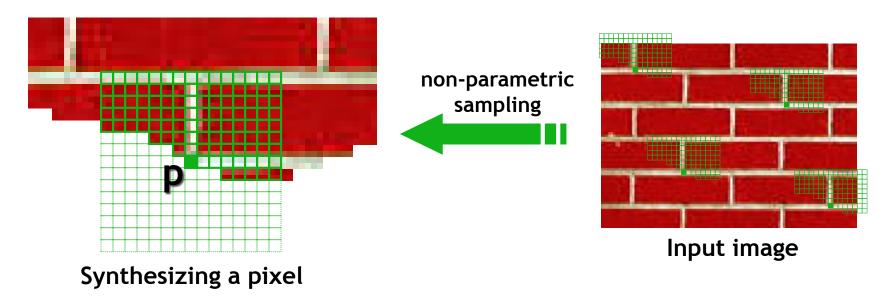
One idea: Build Probability Distributions

But it (usually) doesn't work

Probability distributions are hard to model well



Another idea: Sample from the image



- Assuming Markov property, compute P(p | N(p))
 - Building explicit probability tables infeasible
 - Instead, we search the input image for all similar neighborhoods that's our pdf for p
 - To sample from this pdf, just pick one match at random

Idea from Shannon (Information Theory)

 Generate English-sounding sentences by modeling the probability of each word given the previous words (n-grams)

Large "n" will give more structured sentences

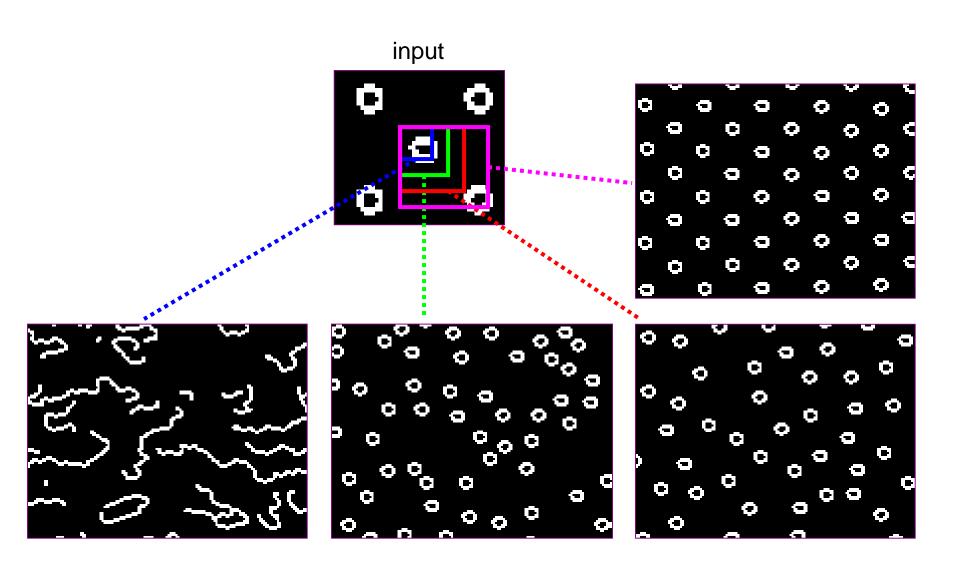
"I spent an interesting evening recently with a grain of salt."

(example from fake single.net user Mark V Shaney)

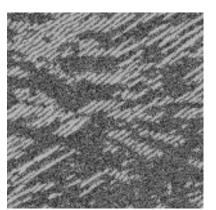
Details

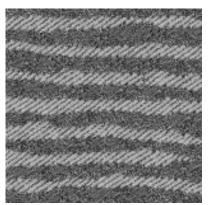
- How to match patches?
 - Gaussian-weighted SSD (more emphasis on nearby pixels)
- What order to fill in new pixels?
 - "Onion skin" order: pixels with most neighbors are synthesized first
 - To synthesize from scratch, start with a randomly selected small patch from the source texture
- How big should the patches be?

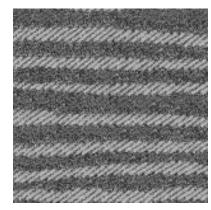
Size of Neighborhood Window

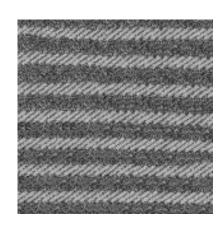


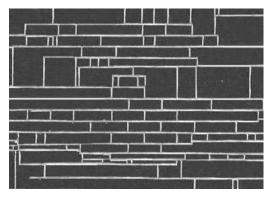
Varying Window Size

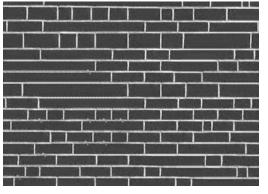


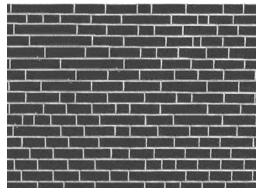












Increasing window size

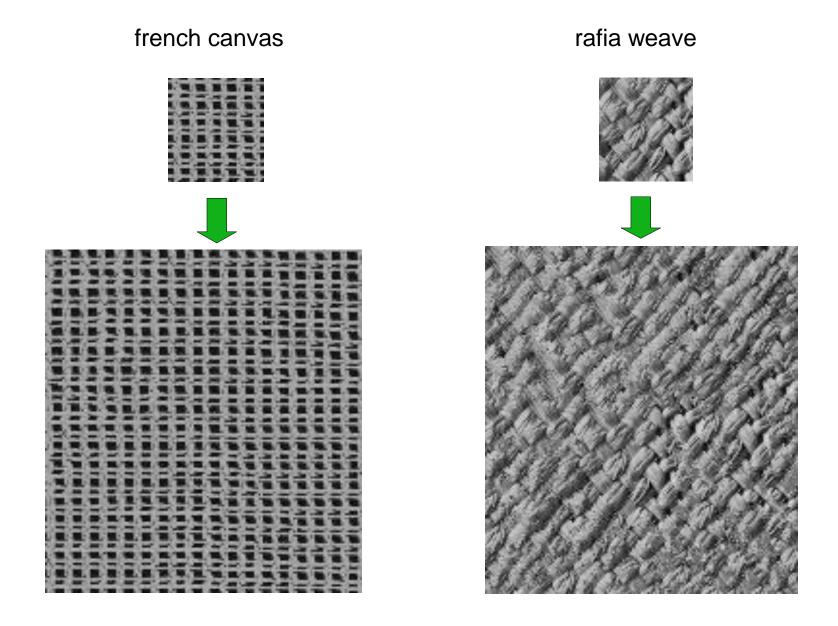
Texture synthesis algorithm

- While image not filled
 - 1. Get unfilled pixels with filled neighbors, sorted by number of filled neighbors

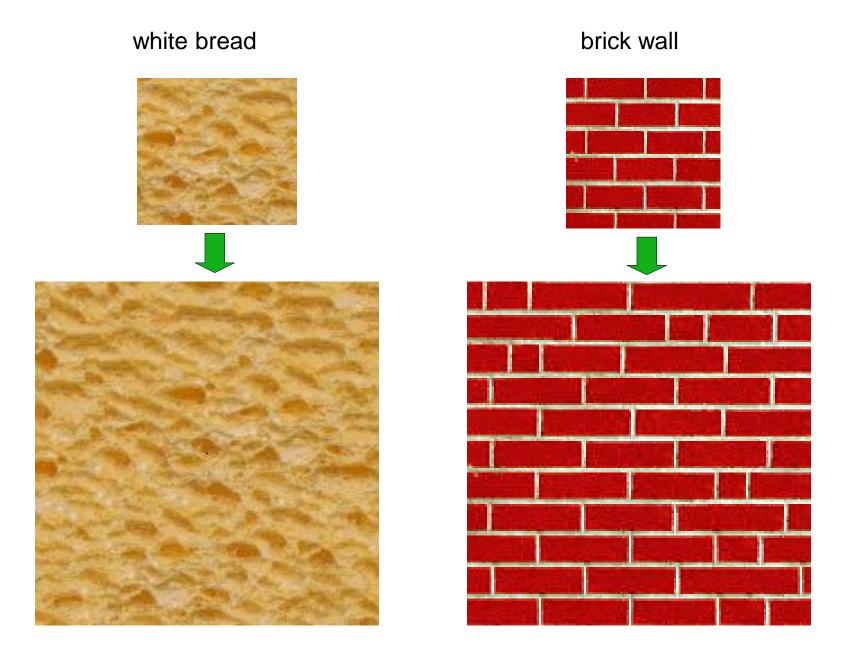
- 2. For each pixel, get top N matches based on visible neighbors
 - Patch Distance: Gaussian-weighted SSD

Randomly select one of the matches and copy pixel from it

Synthesis Results



More Results

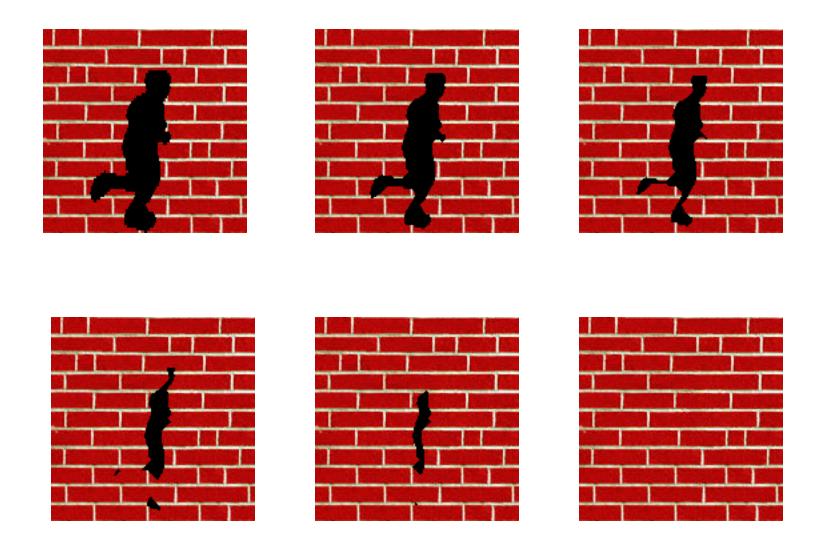


Homage to Shannon

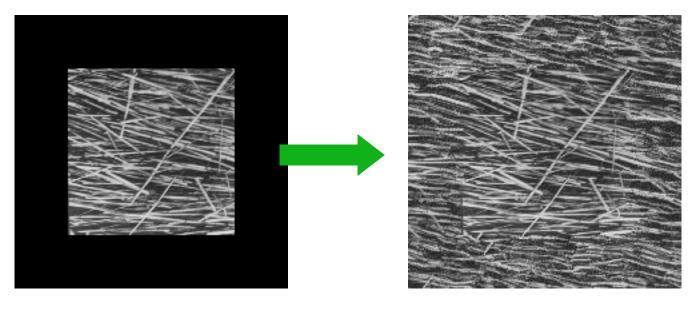
r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh story about the emergenes against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system k g with this latest tanger

thaim, them ."Whephartfe lartifelintomimen iel ck Clirtioout omaim thartfelins,f out 's aneste the ry onst wartfe lck Gephtoomimeationl sigal Clicoufut Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Włeontongal s k Cirtioouirtfepe.ong pme abegal fartfenstemem itiensteneltorydt telemephinsperdt was agemer. ff ons artientont Cling peme asartfe atich, "Boui s nal s fartfelt sig pedr#rdt ske abounutie aboutioo tfeonewas you abownthardt thatins fain, ped, ains, them, pabout wasy arfuut courtly d, In A h ole emthrdngboomme agas fa bontinsyst Clinut : ory about continst Clipeopinst Cloke agatiff out (stome minemen tly ardt beorabod n, thenly as t C cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga: mifmst Cliry abon al coountha emungairt tf oun Yhe looorystan loontieph. intly on, theoplegatick (iul fatiesontly atie Diontiomf wal s f tbegåe ener mthahgat's enenhiilmas fan . "intchthory ahons y

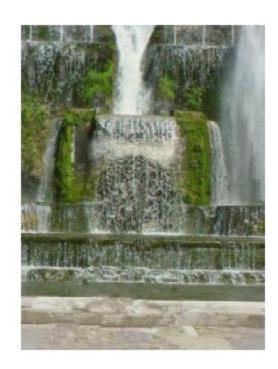
Hole Filling



Extrapolation

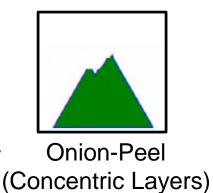


In-painting natural scenes



Key idea: Filling order matters

In-painting Result



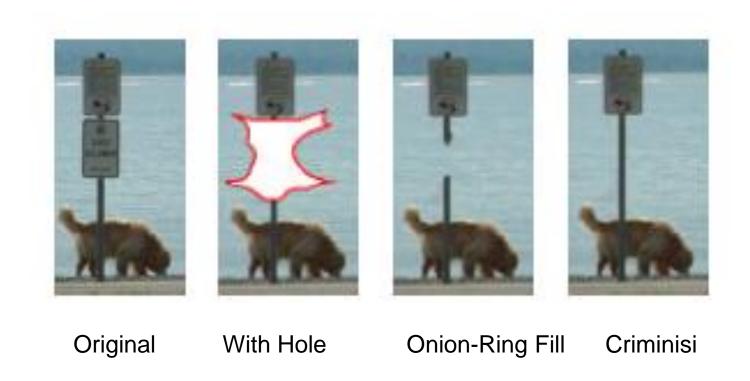
Filling order

Fill a pixel that:

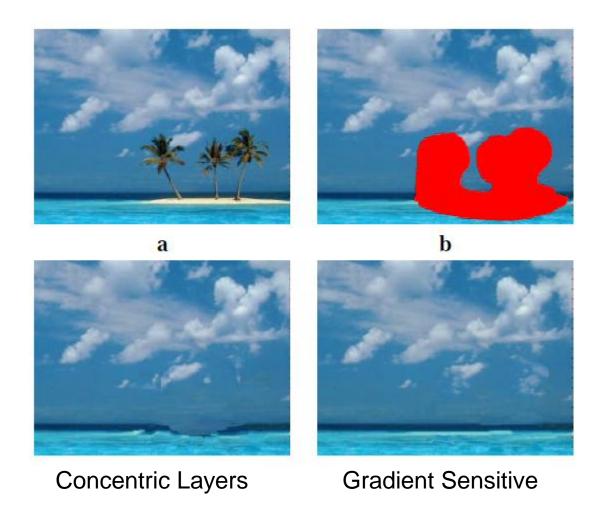
- 1. Is surrounded by other known pixels
- 2. Is a continuation of a strong gradient or edge



Comparison



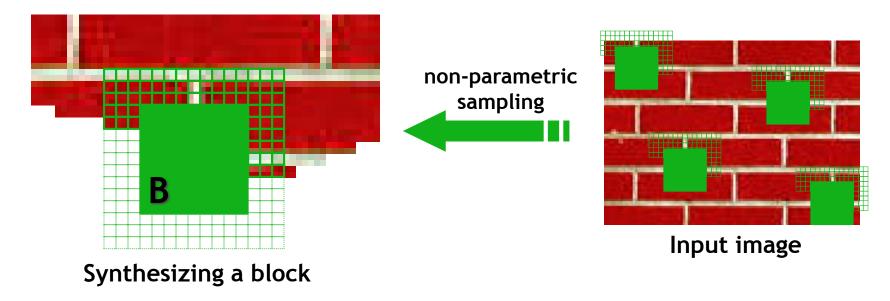
Comparison



Summary

- The Efros & Leung texture synthesis algorithm
 - Very simple
 - Surprisingly good results
 - Synthesis is easier than analysis!
 - ...but very slow

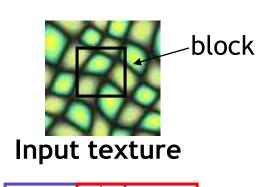
Image Quilting [Efros & Freeman 2001]

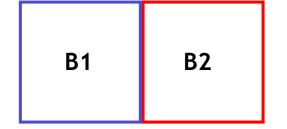


Observation: neighbor pixels are highly correlated

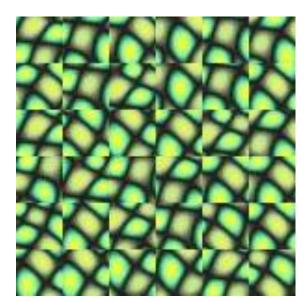
<u>Idea:</u> unit of synthesis = block

- Exactly the same but now we want P(B|N(B))
- Much faster: synthesize all pixels in a block at once

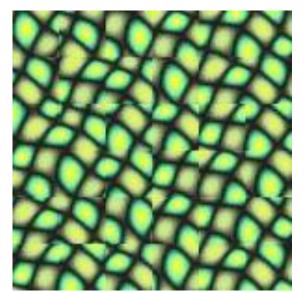


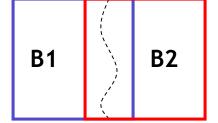


Random placement of blocks

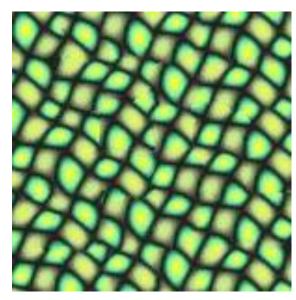


Neighboring blocks constrained by overlap

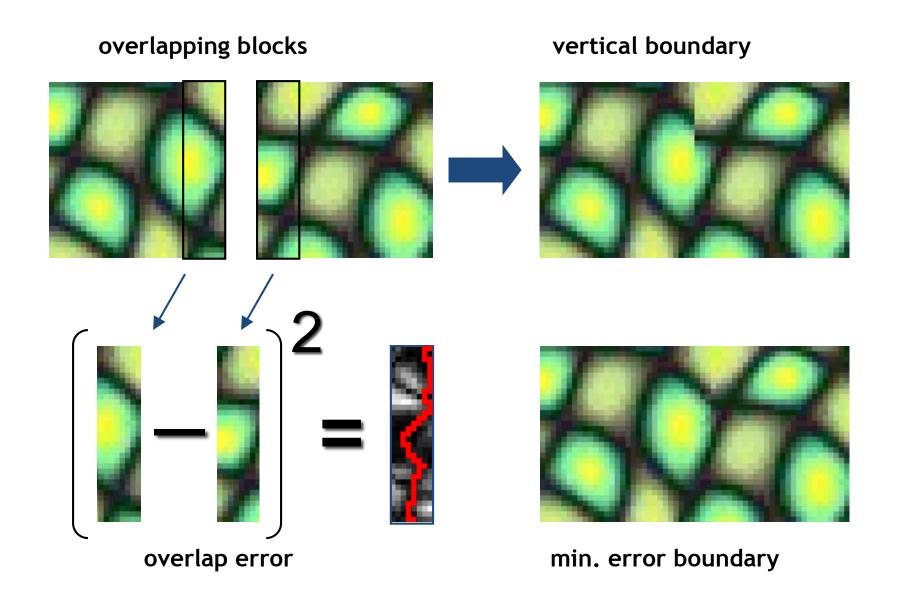




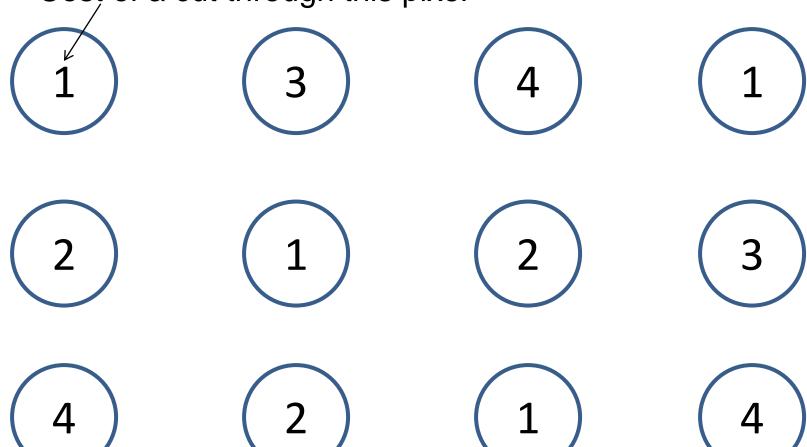
Minimal error boundary cut

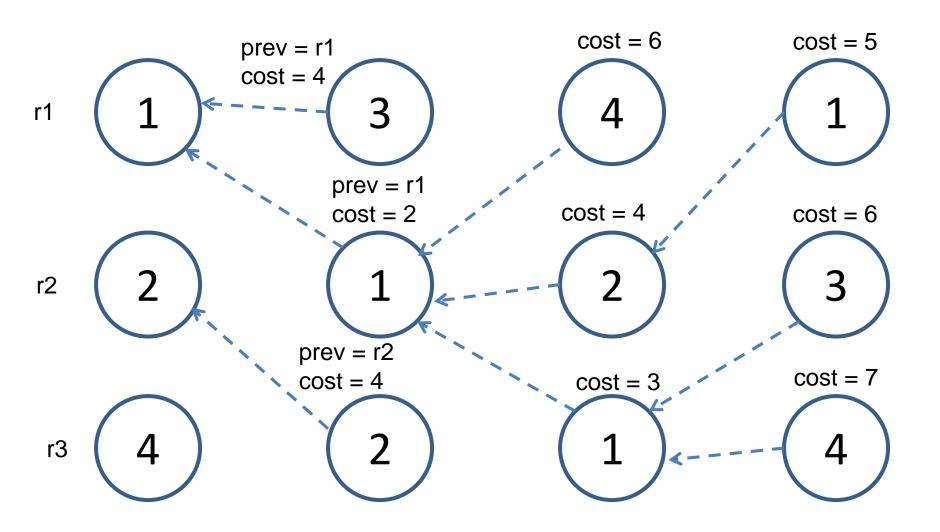


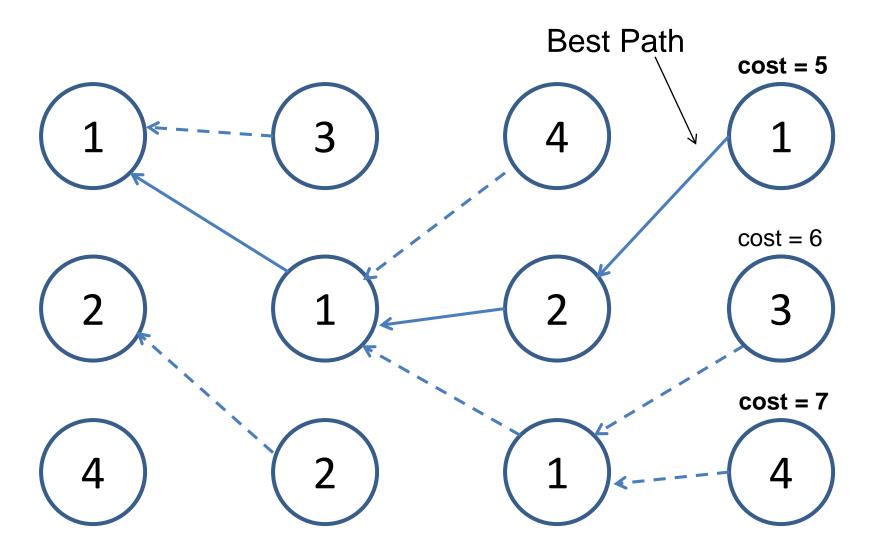
Minimal error boundary

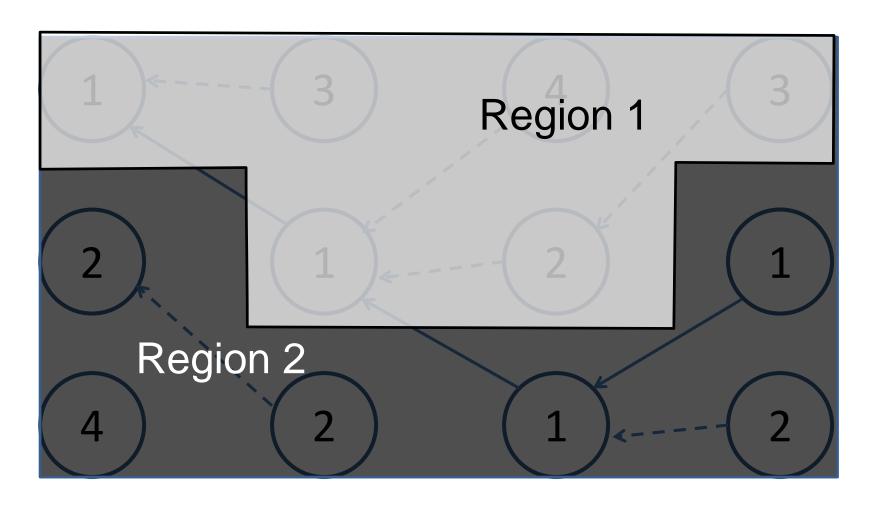


Cost of a cut through this pixel

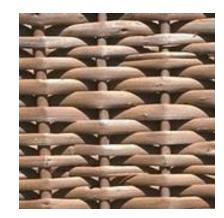


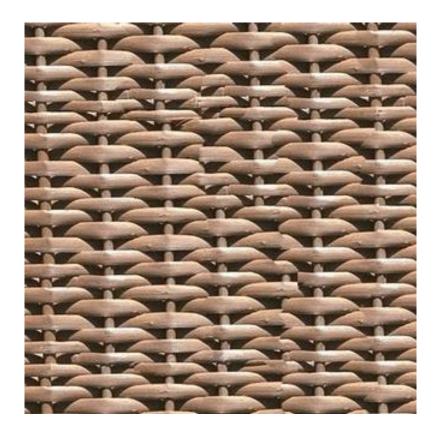


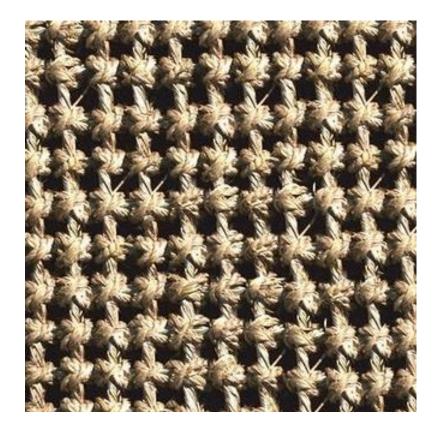


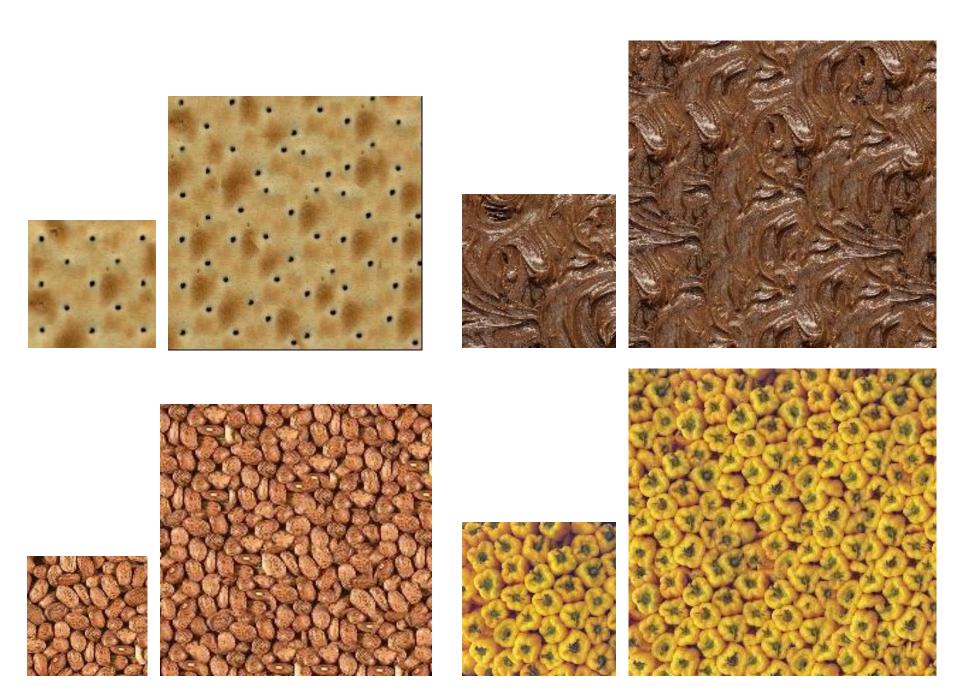


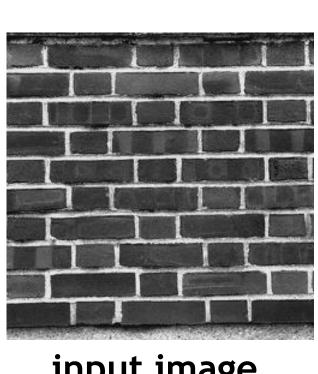
Mask Based on Best Path



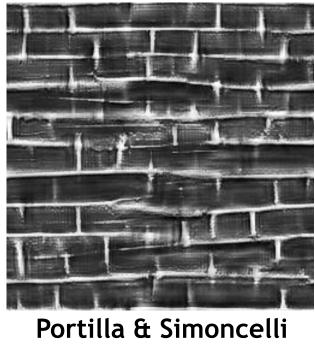


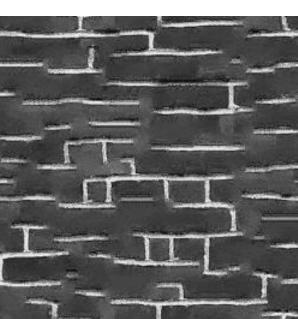




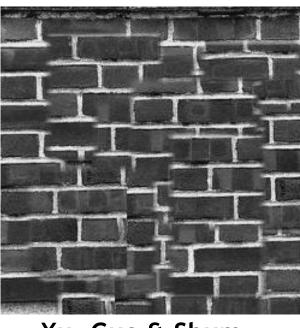


input image

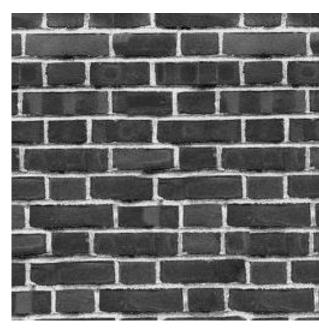




Wei & Levoy



Xu, Guo & Shum



Quilting

describing the response of that neuron ht as a function of position—is perhap functional description of that neuron seek a single conceptual and mathematics which is the wealth of simple-cell recept describe the wealth of simple-cell recept despecially if such a framework has the it helps us to understand the function leeper way. Whereas no generic most ussians (DOG), difference of offset Crivative of a Gaussian, higher derivation function, and so on—can be expected imple-cell receptive field, we noneth

input image

the how allow speed the statement of the commence of the comme

Portilla & Simoncelli

coles nnume tiamm, nelole ewioms recoles nnume tiamm, nelole ewioms record estate at estate at evident electrones encertate at evident electrones encertate at electrones excembrate electrones electr

des and mathem; spraussian, of he as a ht aple-cell recept id so alers of hit as a fund and inferred eptivising to function seek a sespecially if succussians and disscribe deptivities single done eeeper way. We function, certain trussians (DOG) simple-cell ight at neurous its sians (DOG) simple-cell ight at neurous sians (DOG) fiset (us, visare is perhabeleeper in gher derivativity field an mather rivat conceptual and him seek direction of that is for damather fundath of simple-cell ight at neurous implologically an position—fish at neuron implologically an position — fish at neuron imploits and provided in the pro

Xu, Guo & Shum

sition—is perk a single conceptual and

of that neuribe the wealth of simpleual and matheurophysiologically 1-3 and simple-cell necially if such a framewory y1-3 and inferrips us to understand the amework has perhay. Whereas no get and the fumeurorDOG), difference of a no generic a single conceptual and me rence of offse the wealth of simple-ce , higher deriescribing the response of the can be expess a function of positionhelps us to understand thiption of the per way. Whereas no gonceptual an sians (DOG), differencealth of simple-

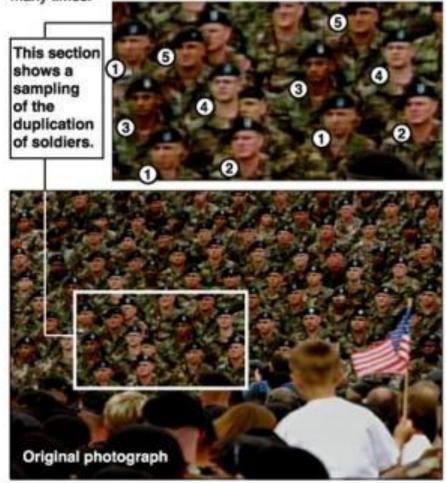
Wei & Levoy

Quilting

Political Texture Synthesis!

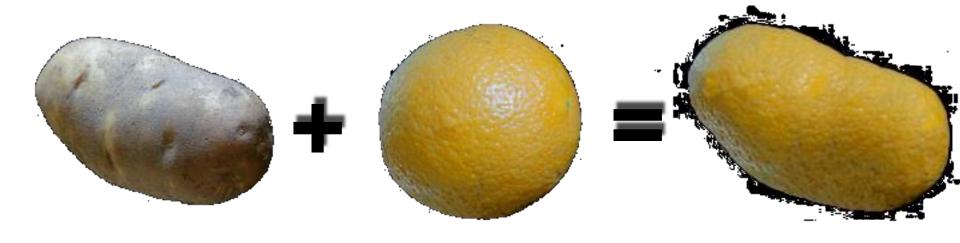
Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

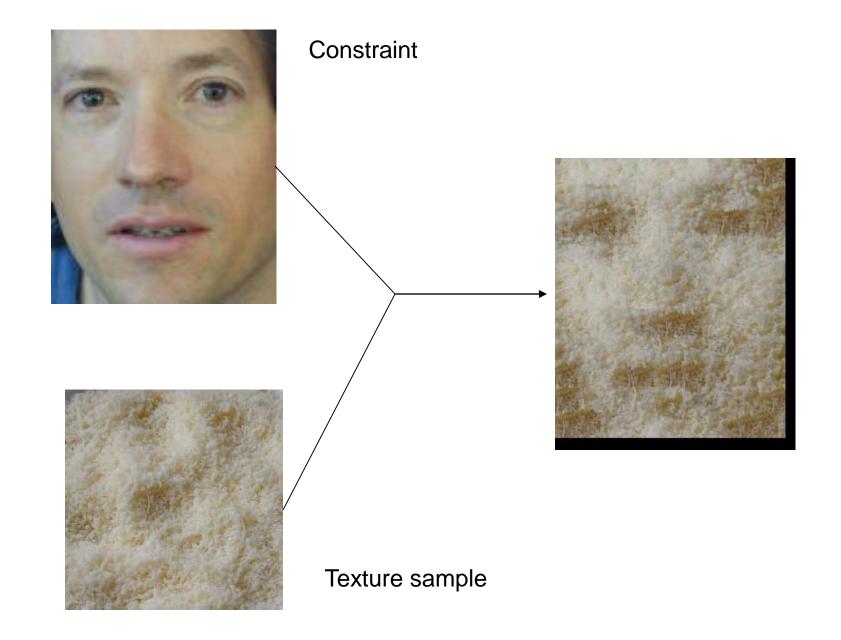


Texture Transfer

 Try to explain one object with bits and pieces of another object:

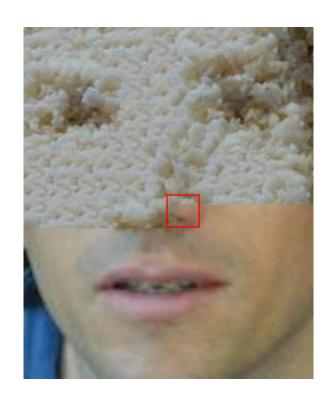


Texture Transfer



Texture Transfer

Take the texture from one image and "paint" it onto another object



Same as texture synthesis, except an additional constraint:

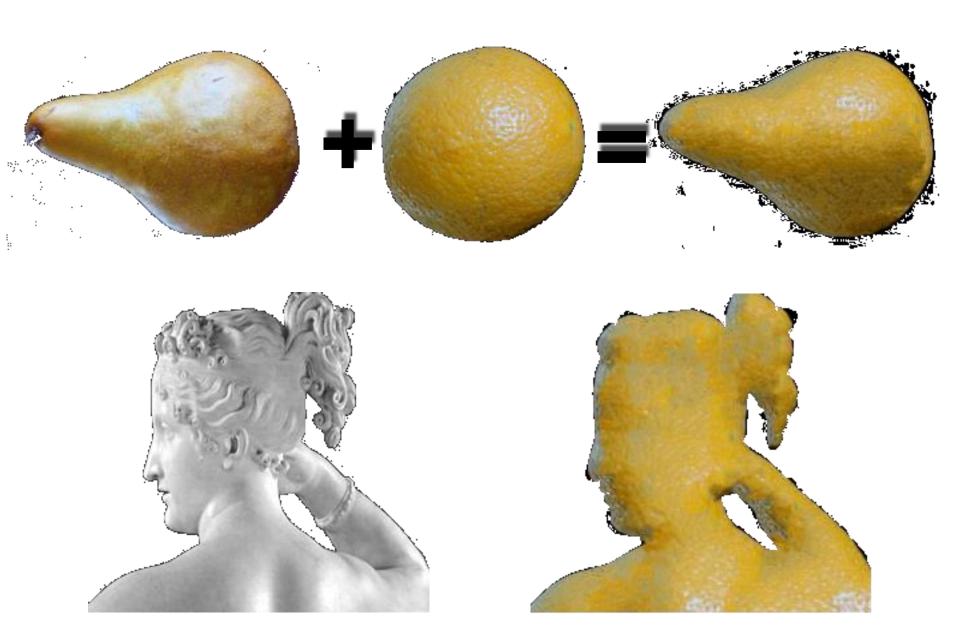
- 1. Consistency of texture
- Patches from texture should correspond to patches from constraint in some way. Typical example: blur luminance, use SSD for distance

source texture

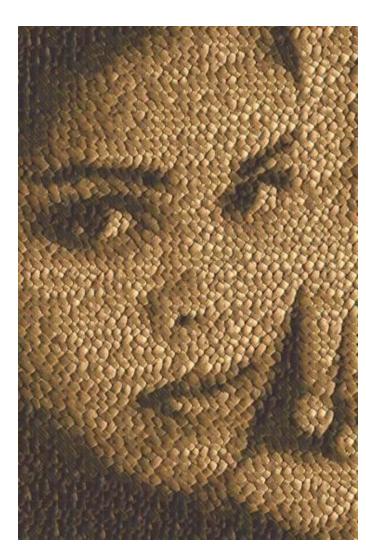
target image

correspondence maps

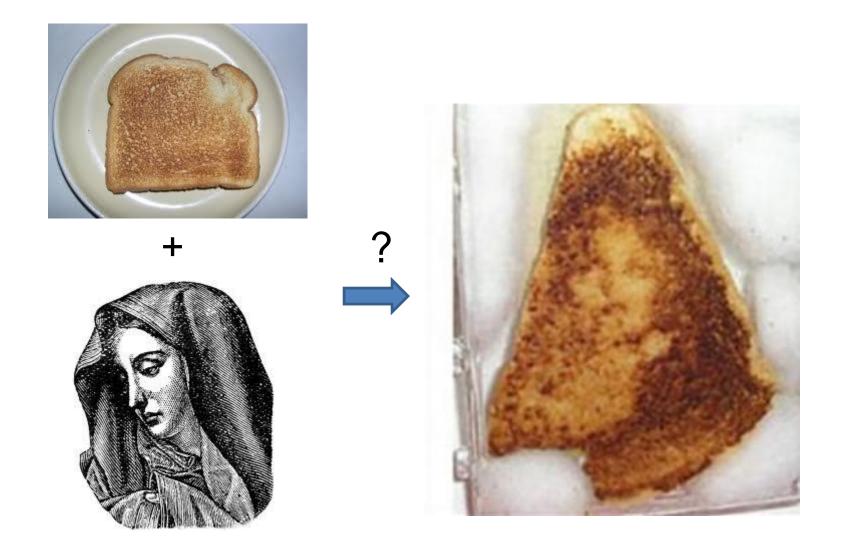
texture transfer result







Making sacred toast



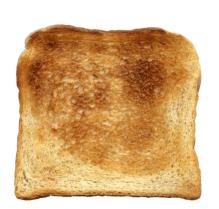
http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/

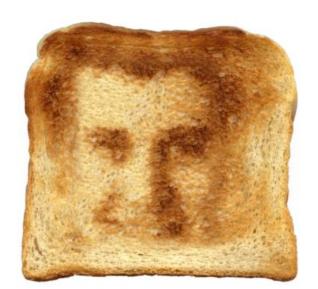
Project 2: texture synthesis and transfer

- https://courses.engr.illinois.edu /cs445/fa2015/projects/quiltin g/ComputationalPhotography_ ProjectQuilting.html
- Note: this is significantly more challenging than the first project

ut it becomes harder to lau ound itself, at "this daily i ving rooms," as House Der escribed it last fall. He fai ut he left a ringing question ore years of Monica Lewin inda Tripp?" That now seer Political comedian Al Fran ext phase of the story will

UNG ITSELL, AT INTS IT DECOMES NAVGEY ITSELL, AT INTS O ing rooms," as Hound itself, at "thisrooms," as Hous cribed it last falling rooms," as Hoved it last fall. H the left a ringing quibed it last fall. left a ringing qui re years of Monica le left a ringing years of Monica I da Tripp?" That not years of Monic Tripp?" That now olitical comedian ada Tripp?" That ntical comedian Al ms," as Hoitself, at "this dre years of Monicaelf, at " t last fal rooms," as Housida Tripp?" That noms," as ! a ringing ed it last fall. He itical comedian At last fa of Moniceft a ringing ques "this dairooms," as Hous p?" That rears of Monica Las Houseibed it last fall. F comes hardins dailboms," as fall. He left a ringing qu tself, at "tHouse ed it last fall. He years of Monica l oms," as fall. He fat a ringing questTripp?" That nos d it last fare years of Monicatica Les of Monicdiangir ft a ringinda Tripp?" That nat now so?" That s of Mor irs of Moolitical comediardian Al Fcomediapp?" That





Texture Synthesis and Transfer Recap

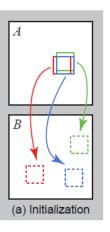
For each overlapping patch in the output image

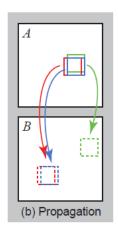
- 1. Compute the cost to each patch in the sample
 - Texture synthesis: this cost is the SSD (sum of square difference) of pixel values in the overlapping portion of the existing output and sample
 - Texture transfer: cost is $\alpha*SSD_{overlap}+(1-\alpha)*SSD_{transfer}$ The latter term enforces that the source and target correspondence patches should match.
- 2. Select one sample patch that has a small cost
- Find a cut through the left/top borders of the patch based on overlapping region with existing output
 - Use this cut to create a mask that specifies which pixels to copy from sample patch
- 4. Copy masked pixels from sample image to corresponding pixel locations in output image

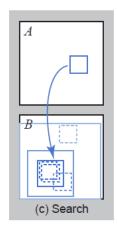
PatchMatch

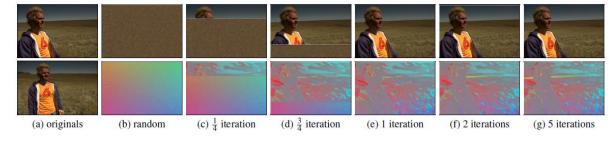
More efficient search:

- 1. Randomly initialize matches
- 2. See if neighbor's offsets are better
- 3. Randomly search a local window for better matches
- 4. Repeat 3, 4 across image several times

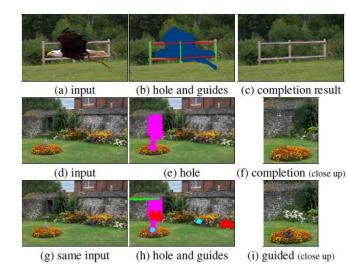






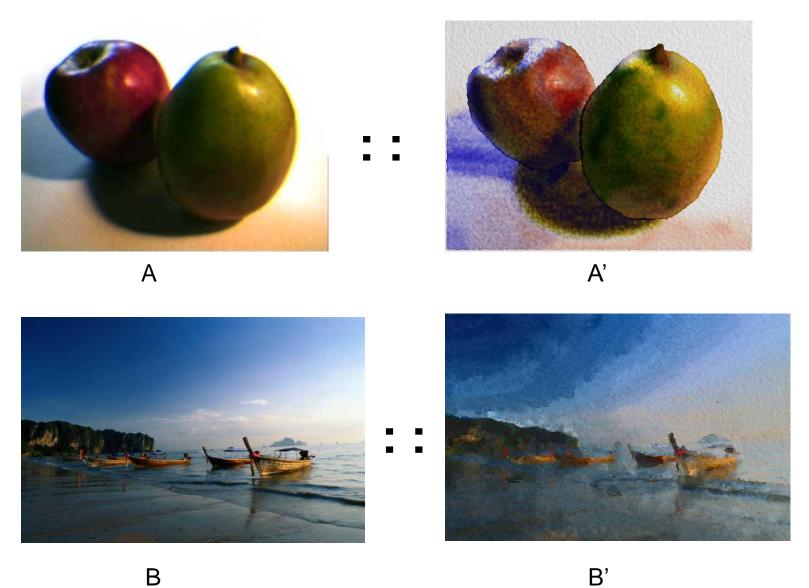


Reconstructing top-left image with patches from bottom-left image



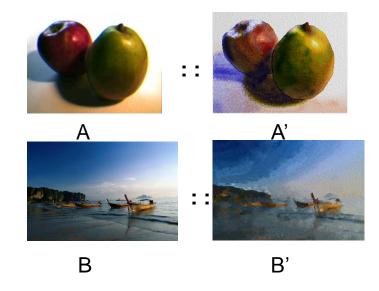
Applications to hole-filling, retargeting; constraints can guide search

Related idea: Image Analogies



B' Image Analogies, Hertzmann et al. SG 2001

Image analogies



- Define a similarity between A and B
- For each patch in B:
 - Find a matching patch in A, whose corresponding
 A' also fits in well with existing patches in B'
 - Copy the patch in A' to B'
- Algorithm is done iteratively, coarse-to-fine

Blur Filter

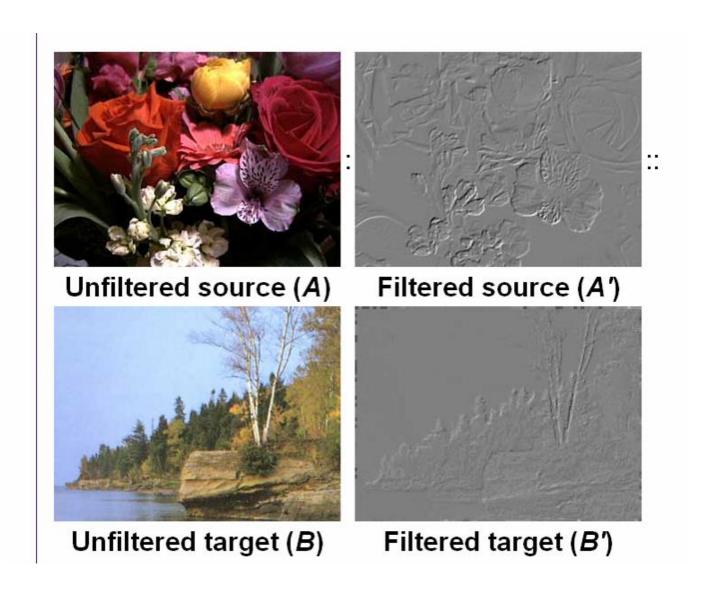
Unfiltered source (A)

Filtered source (A')

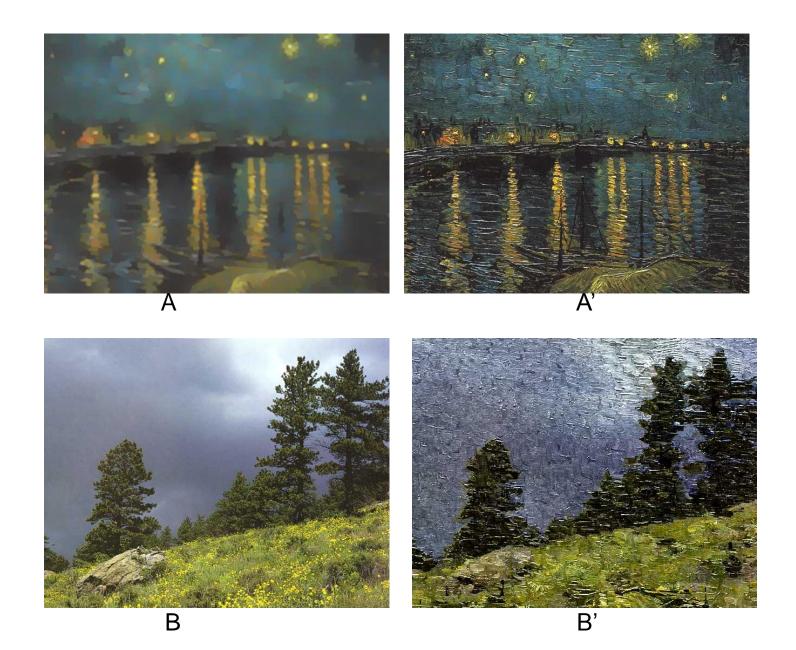
Unfiltered target (B)

Filtered target (B')

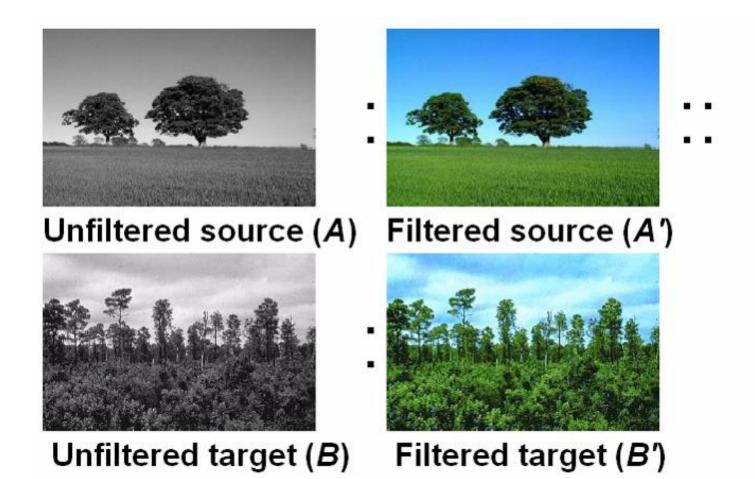
Edge Filter



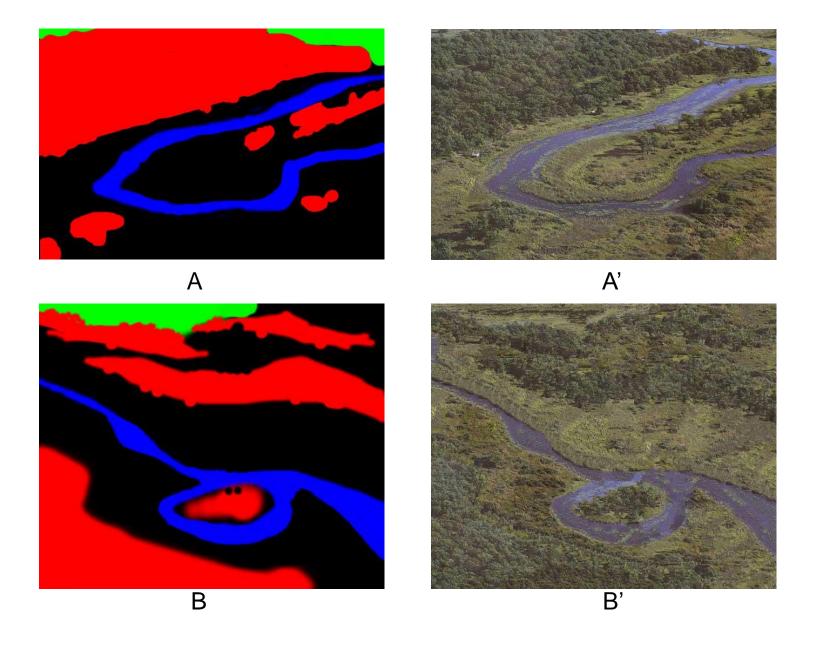
Artistic Filters



Colorization



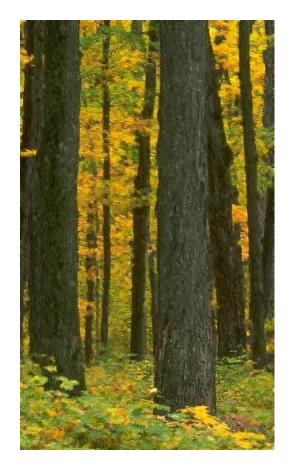
Texture-by-numbers



Super-resolution

A'

Super-resolution (result!)



B B'

Things to remember

- Texture synthesis and hole-filling can be thought of as a form of probabilistic hallucination
- Simple, similarity-based matching is a powerful tool
 - Synthesis
 - Hole-filling
 - Transfer
 - Artistic filtering
 - Super-resolution
 - Recognition, etc.

Key is how to define similarity and efficiently find neighbors

Next class

Cutting and seam finding