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Learning a model

• 𝑓𝑓 𝑿𝑿;𝜃𝜃 : the model, e.g. 𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙
• 𝜃𝜃: parameters of the model (e.g. 𝒘𝒘)
• (𝑿𝑿,𝒚𝒚): pairs of training samples
• 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(): defines what makes a good model

– Good predictions, e.g. minimize −∑𝑛𝑛 log𝑃𝑃(𝑦𝑦𝑛𝑛|𝒙𝒙𝑛𝑛)
– Likely parameters, e.g. minimize 𝒘𝒘𝑇𝑇𝒘𝒘

• Regularization and priors indicate preference for particular solutions, which tends to 
improve generalization (for well chosen parameters) and can be necessary to obtain 
a unique solution

𝜃𝜃∗ = argmin
𝜃𝜃

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓 𝑿𝑿;𝜃𝜃 ,𝒚𝒚)



Prediction using a model

𝑦𝑦𝑡𝑡 = 𝑓𝑓 𝒙𝒙𝒕𝒕;𝜃𝜃
• Given some new set of input features 𝒙𝒙𝑡𝑡, model predicts 𝑦𝑦𝑡𝑡

– Regression: output 𝑦𝑦𝑡𝑡 directly, possibly with some variance estimate
– Classification

• Output most likely 𝑦𝑦𝑡𝑡 directly, as in nearest neighbor
• Output 𝑃𝑃(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡), as in logistic regression



Model evaluation process

1. Collect/define training, validation, and test sets
2. Decide on some candidate models and hyperparameters
3. For each candidate:

a. Learn parameters with training set
b. Evaluate trained model on the validation set

4. Select best model
5. Evaluate best model’s performance on the test set

– Cross-validation can be used as an alternative
– Common measures include error or accuracy, root mean squared 

error, precision-recall



Bias-Variance Trade-off

See this for derivation Fig Sources

Variance: due to limited data
Different training samples will give different models that vary in predictions for the same test sample

“Noise”: irreducible error due to data/problem

Bias: error when optimal model is learned from infinite data

Above is for regression.  
But same error = variance + noise + bias2 holds for classification error and logistic regression.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
http://scott.fortmann-roe.com/docs/BiasVariance.html


How to detect high variance:
• Test error is much higher than 

training error

How to detect high bias or noise:
• The training error is high

As you increase model complexity:
• Training error will decrease
• Test error may decrease (if you are 

currently “underfitting”) or increase (if 
you are “overfitting”)

Underfitting Overfitting



Performance vs training size
As we get more training data:

1. The same model has more difficulty 
fitting the training data

2. But the test error becomes closer to 
training error (reduced generalization 
error)

3. Overall test performance improvesTesting

Training
Number of Training Examples

Er
ro

r

Fixed model

Test error with infinite training examples

Train error with infinite training examples
Due to difference in P(y|x) in 
training and test (function shift)

Due to limited training data 
(model variance) and 
distribution shift

Due to limited power of model 
(model bias) and unavoidable 
intrinsic error (Bayes optimal 
error)



Classification methods
Nearest Neighbor Naïve Bayes Logistic Regression Decision Tree

Type Instance-Based Probabilistic Probabilistic Probabilistic 

Decision 
Boundary

Partition by example distance Usually linear Usually linear Partition by selected 
boundaries

Model / 
Prediction

𝑖𝑖∗ = argmin
𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖], 𝑥𝑥

𝑦𝑦∗ = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖∗
𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃 𝑦𝑦 𝑥𝑥

Conjunctive rules
𝑦𝑦∗ = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)

Strengths * Low bias
* No training time
* Widely applicable
* Simple

* Estimate from limited data
* Simple
* Fast training/prediction

* Powerful in high 
dimensions
* Widely applicable
* Good confidence 
estimates
* Fast prediction

* Explainable decision 
function
* Widely applicable
* Does not require 
feature scaling

Limitations * Relies on good input features
* Slow prediction (in basic 
implementation)

* Limited modeling power * Relies on good 
input features

* One tree tends to 
either generalize poorly 
or underfit the data



Classification methods (extended)

Naïve 
Bayes

Logistic 
Regression

Linear 
SVM

Nearest 
Neighbor

Kernelized 
SVM

Learning Objective
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−log 𝑃𝑃 𝑦𝑦𝑖𝑖|𝐱𝐱,𝛉𝛉 + 𝜆𝜆 𝛉𝛉

where 𝑃𝑃 𝑦𝑦𝑖𝑖|𝐱𝐱,𝛉𝛉 = 1/ 1 + exp −𝑦𝑦𝑖𝑖𝛉𝛉𝑇𝑇𝐱𝐱
Gradient descent   tT >xθ

  tT >xθ
Quadratic programming 
or subgradient opt.0  ,  1  such that 

2
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programming

complicated to write

most similar features  same label Record data
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* Notation may differ from previous slide



Regression methods
Nearest Neighbor Naïve Bayes Linear Regression Decision Tree

Type Instance-Based Probabilistic Data fit Probabilistic 

Decision 
Boundary

Partition by example distance Usually linear Linear Partition by selected 
boundaries

Model / 
Prediction

𝑖𝑖∗ = argmin
𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖], 𝑥𝑥

𝑦𝑦∗ = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖∗
𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)
𝑦𝑦∗ = 𝑤𝑤𝑇𝑇𝑥𝑥 Conjunctive rules

𝑦𝑦∗ = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)

Strengths * Low bias
* No training time
* Widely applicable
* Simple

* Estimate from limited data
* Simple
* Fast training/prediction

* Powerful in high 
dimensions
* Widely applicable
* Fast prediction
* Coefficients may be 
interpretable

* Explainable decision 
function
* Widely applicable
* Does not require 
feature scaling

Limitations * Relies on good input features
* Slow prediction (in basic 
implementation)

* Limited modeling power * Relies on good 
input features

* One tree tends to 
either generalize poorly 
or underfit the data



Entropy and Information Gain
• Entropy, 𝐻𝐻(𝑋𝑋): measures 

uncertainty of X
• Specific conditional entropy, 
𝐻𝐻(𝑋𝑋|𝑌𝑌 = 𝑦𝑦): measures 
uncertainty of 𝑋𝑋 if 𝑌𝑌 is known 
to have a particular value

• Conditional entropy 𝐻𝐻 𝑋𝑋 𝑌𝑌 : 
measures expected uncertainty 
of 𝑋𝑋 if I know 𝑌𝑌 

• Information gain 𝐼𝐼(𝑋𝑋|𝑌𝑌): 
measures how much knowing 𝑌𝑌 
would reduce my uncertainty in 
𝑋𝑋

𝐻𝐻 𝑋𝑋 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = −�
𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃(𝑌𝑌 = 𝑦𝑦)

I 𝑋𝑋|𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻(𝑋𝑋|𝑌𝑌)



Deep Learning



Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces 

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)



Adam: Adaptive Moment Estimation
Adam:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡 + 1 − 𝛽𝛽 ⋅ 𝑔𝑔(𝑤𝑤𝑡𝑡)  [momentum, 𝛽𝛽 = 0.9]
𝑔𝑔𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑡𝑡 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2   [RMSProp, 𝜖𝜖 = 0.999]

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡/ 𝑔𝑔𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡) 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 
 

AdamW is widely used and easier to 
tune than SGD + momentum



AlexNet CNN



ResNet Block



ResNet - 18
class Network(nn.Module):

def __init__(self, num_classes=1000):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input



Transformer Block



BERT



GPT Series

• All Transformer-based, similar to BERT

• GPT: generative-pretraining (GPT) is effective for large 
language models
– Learns to predict the next word given preceding words

• GPT-2: GPT models can perform reasonable zero-shot task 
performance with larger models trained on more data

• GPT-3: Even larger GPT models trained on even more data are 
good at many tasks, especially text generation, and can be 
“trained” at inference time with in-context examples



CLIP: Learning Transferrable Models from Natural 
Language Supervision (Radford et al. 2021)



How to apply linear probe
Pre-compute features method
1. Load pretrained model (many 

available)
https://pytorch.org/vision/stable/model
s.html 

2. Remove prediction final layer
3. Apply model to each image to get 

features; save them with labels
4. Train new linear model (e.g. logistic 

regression or SVM) on the features

Freeze encoder method
1. Load pretrained model (many 

available)
https://pytorch.org/vision/stable/m
odels.html 

2. Set network to not update 
weights

3. Replace last layer
4. Retrain network with new 

dataset
- Slower than method on left but 
does not require storing features, 
and can apply data augmentation

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6


How to apply fine-tuning
1. Load pre-trained model
2. Replace last layer
3. Set a low learning rate (e.g. lr=e-4) 

– Very sensitive to learning rate because you want to improve but not drift too far from 
the initial model  -- learning rate is the most critical parameter for fine-tuning!

– Learning rate is often at least 10x lower than from “scratch” training
– Can “warm start” by freezing earlier layers initially and then unfreezing after a few 

epochs when the linear layer is mostly trained (avoids messing up encoder while 
classifier is adjusting), or start learning rate near zero and increase slowly over several 
epochs

– Can set lower learning rate for earlier layers

In this example, last layer has 512 input features and is called “fc”



ResNet18, Err vs # examples / class (in paren)

Green: Train from scratch
Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet

“Learning Curves” (2021) pdf

16 examples per class400+ examples per class

Comparing linear probe, fine-tuning, and training from 
scratch, when does each have an advantage and why?

Very little data
• Use linear probe on pre-trained model

Moderate data
• Fine-tune pre-trained model

Very large dataset
• Either fine-tune or train from scratch

https://arxiv.org/abs/2010.11029


Summaries



KNN Classification (L2)

• Foundation of ML: similar features predict 
similar labels
– Hard part: How to represent inputs with 

vectors that reflect the similarity

• KNN is a simple but effective classifier that 
predicts the label of the most similar 
training example(s)
– Accuracy depends on quality of features 

and number of training samples

• Larger K gives a smoother prediction 
function

• Measure classification performance with 
error and confusion matrices



Working with Data (L2)

• Data is a set of numbers that contains information. Images, audio, signals, tabular data and everything else 
must be represented as a vector of numbers to be used in ML.

• Information is the power to predict something – a lot of the challenge in ML is in transforming the data to 
make the desired information more obvious

• In machine learning, we have
Sample: a data point, such as a feature vector and label corresponding to the input and desired output of the model
Dataset: a collection of samples
Training set: a dataset used to train the model
Validation set: a dataset used to select which model to use or compare variants and manually set parameters
Test set: a dataset used to evaluate the final model

• In a classification problem, the goal is to map from features to a categorical label (or “class”)

• Nearest neighbor (or K-NN) algorithm can perform classification by retrieving the K nearest neighbors to the 
query features and assigning their most common label 

• We can measure error and confusion matrices to show the fraction of mistakes and what kinds of mistakes 
are made



KNN Regression & Generalization (L3)
• Similarity/distance measures: L1, L2, cosine

• KNN can be used for either classification 
(return most common label) or regression 
(return average target value)

• Regression error measures
– Root mean squared error(RMSE) 

1
N
∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

– R2: 1 − ∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 −𝑦𝑦𝑖𝑖 2

∑𝑖𝑖 𝑦𝑦𝑖𝑖−�𝒚𝒚 2

• Test error is composed of  
– Irreducible error (perfect prediction not 

possible given features)
– Bias (model cannot perfectly fit the true 

function) 
– Variance (parameters cannot be perfectly 

learned from training data)



Clustering (L4)

• Use highly optimized libraries like 
FAISS for search/retrieval

• Approximate search methods like 
LSH can be used to find similar 
points quickly

• Clustering groups similar data 
points

• K-means is the must-know method, 
but there are many others



PCA/Embedding (L5)
• PCA reduces dimensions by linear projection

– Preserves variance to reproduce data as well as 
possible, according to mean squared error

– May not preserve local connectivity structure or 
discriminative information

• Other methods try to preserve relationships 
between points
– MDS: preserve pairwise distances
– IsoMap: MDS but using a graph-based distance
– t-SNE: preserve a probabilistic distribution of 

neighbors for each point (also focusing on closest 
points)

– UMAP: incorporates k-nn structure, spectral 
embedding, and more to achieve good embeddings 
relatively quickly



Linear Regression (L6)

• Linear regression fits a linear model to a 
set of feature points to predict a 
continuous value
– Explain relationships
– Predict values
– Extrapolate observations

• Regularization prevents overfitting by 
restricting the magnitude of feature 
weights

– L1: prefers to assign a lot of weight to the most 
useful features

– L2: prefers to assign smaller weight to 
everything



Linear Classifiers (L7)
• Linear logistic regression and linear SVM are 

classification techniques that aims to split features 
between two classes with a linear model
– Predict categorical values with confidence

• Logistic regression maximizes confidence in the 
correct label, while SVM just tries to be confident 
enough

• Non-linear versions of SVMs can also work well and 
were once popular (but almost entirely replaced by 
deep networks)

• Nearest neighbor and linear models are the final 
predictors of most ML algorithms – the complexity 
lies in finding features that work well with NN or 
linear models



Probability / Naïve Bayes (L8)
• Probabilistic models are a large class of 

machine learning methods

• Naïve Bayes assumes that features are 
independent given the label
– Easy/fast to estimate parameters
– Less risk of overfitting when data is limited

• You can look up how to estimate parameters 
for most common probability models
– Or take partial derivative of total data/label 

likelihood given parameter

• Prediction involves finding y that maximizes 
𝑃𝑃(𝑥𝑥,𝑦𝑦), either by trying all 𝑦𝑦 or solving 
partial derivative

• Maximizing log𝑃𝑃(𝑥𝑥,𝑦𝑦) is equivalent to 
maximizing 𝑃𝑃(𝑥𝑥,𝑦𝑦) and often much easier

𝑃𝑃 𝒙𝒙,𝑦𝑦 = �
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)



EM (L9)

• EM is a widely applicable algorithm to 
solve for latent variables and parameters 
that make the observed data likely
– E-step: compute the likelihoods of the values 

of the latent variables 
– M-step: solve for most likely model 

parameters, using the likelihoods from the E-
step as weights

• While derivation is long and somewhat 
complicated, the application is simple

• EM is used, for example, in mixture of 
Gaussian and topic models

(Green = true; red = prediction)

Good annotators: 0, 1, 3

Estimated scores



PDF Estimation (L10)

Parametric Models Semi-Parametric Non-Parametric

Description Assumes a fixed 
form for density

Can fit a broad 
range of functions 
with limited 
parameters

Can fit any 
distribution

Examples Gaussian, 
exponential

Mixture of 
Gaussians

Discretization, 
kernel density 
estimation

Good when
Model is able to 
approximately fit 
the distribution

Low dimensional or 
smooth distribution 1-D data

Not good when
Model cannot 
approximate the 
distribution

Distribution is not 
smooth, challenging 
in high dimensions

Data is high 
dimensional



Robust Estimation (L11)

Median and quantiles are 
robust to outliers, while 
mean/min/max aren’t

Outliers can be detected as 
low probability points, low 
density points, poorly 
compressible points, or 
through 2D visualizations

Least squares is not robust to 
outliers. Use RANSAC or IRLS 
or robust loss function 
instead.



Decision Trees (L12)
• Decision/regression trees 

learn to split up the feature 
space into partitions with 
similar values

• Entropy is a measure of 
uncertainty

• Information gain measures 
how much particular 
knowledge reduces prediction 
uncertainty 



Ensembles and Forests (L13)

• Ensembles improve accuracy and 
confidence estimates by reducing 
bias and/or variance

• Boosted trees minimize bias by 
fixing previous mistakes

• Random forests minimize variance 
by averaging over multiple 
different trees 

• Random forests and boosted trees 
are powerful classifiers and useful 
for a wide variety of problems



SGD (L14)

• Gradient descent iteratively steps 
in direction of negative gradient of 
loss

• Stochastic gradient descent 
estimates gradient using small 
batches of samples
– Faster than full gradient descent

• Linear models have limited ability 
to fit the data – often need non-
linear models like multilayer 
networks



MLPs and Backprop (L15)

• Perceptrons are linear prediction models

• MLPs are non-linear prediction models, 
composed of multiple linear layers with non-
linear activations

• MLPs can model more complex functions, but 
are harder to optimize 

• Optimization is by a form of stochastic gradient 
descent

• Deeper networks are subject to vanishing 
gradient problems that are reduced (but not 
eliminated) with ReLU activations

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


CNNs Keys to Deep Learning (L16)
• Deep networks provide huge gains in 

performance
– Large capacity, optimizable models
– Learn from new large datasets

• ReLU and skip connections simplify 
optimization

• SGD+momentum and AdamW are the 
most commonly used optimizers

ImageNet



Deep Learning Optimization and Computer Vision (L17)

• Models trained on ImageNet are 
used as pretrained “backbones” for 
other vision tasks

• Mask-RCNN samples patches in 
feature maps and predicts boxes, 
object region, and keypoints

• Many image generation and 
segmentation methods are based on 
U-Net downsamples while 
deepening features, then upsamples 
with skip connections



Words and Attention (L18)
Sub-word tokenization based on byte-pair 
encoding is an effective way to turn natural 
text into a sequence of integers

Attention is a general processing 
mechanism that regresses or clusters values 

Input 
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Learned vector embeddings of these 
integers model the relationships between 
words

Stacked transformer blocks are a powerful 
network architecture that alternates 
attention and MLPs

Paris – France 
+ Italy = Rome

Chair is broken 
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/ 

http://nlp.seas.harvard.edu/annotated-transformer/


Transformers, Vision and Language (L19)
• Transformers are general data processors, 

applicable to text, vision, audio, control, and 
other domains

• Pre-training to generate missing tokens in 
unsupervised text data learns a general 
model that can be fine-tuned
- Same idea is also applicable to other domains 

• Transformer architectures are state-of-art for 
vision and language individually

• Arguably, the biggest benefit of transformers 
is ability to combine information from 
multiple domains



CLIP and GPT (L20)

• Deep learning application often involves starting 
with a pre-trained “foundation” model and fine-
tuning it

• With large-scale training and the right 
formulations, models can perform a range of tasks 
including those not explicitly trained

• GPT demonstrates that learning to predict the next 
word produces a flexible zero-shot and few-shot 
general language task performer

• CLIP shows that learning to match images to text 
produces a good zero-shot classifier and an 
excellent image encoder
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