Recap and
Review —
Exam 2

Applied Machine Learning
Derek Hoiem

Learning a model

0* = argmin Loss(f (X;0),y)
0

f(X;0):the model,e.g. y = wix

e O:parameters of the model (e.g. w)

* (X, y): pairs of training samples

e Loss(): defines what makes a good model

— Good predictions, e.g. minimize —), log P(y,,|x,,)

— Likely parameters, e.g. minimize w! w

* Regularization and priors indicate preference for particular solutions, which tends to
improve generalization (for well chosen parameters) and can be necessary to obtain
a unique solution

Prediction using a model

Ve = f(x;0)
* Given some new set of input features x;, model predicts y;

— Regression: output vy, directly, possibly with some variance estimate

— Classification
* Output most likely y; directly, as in nearest neighbor
* Output P(y;|x;), as in logistic regression

Model evaluation process

1. Collect/define training, validation, and test sets
2. Decide on some candidate models and hyperparameters
3. For each candidate:

a. Learn parameters with training set
b. Evaluate trained model on the validation set

4. Select best model

5. Evaluate best model’s performance on the test set

— Cross-validation can be used as an alternative

— Common measures include error or accuracy, root mean squared
error, precision-recall

Bias-Variance Trade-off

Exy D [(hD(x} - y}g] = Ex,p [(hﬂ(x} - h{x))ﬂ + Exy [{3_"{1) B yﬂ + Ex [(ﬁ'(x) B ﬂ(]{))g}

T - T - N
il T Tt

Expected Test Error Variance Noise

Variance: due to limited data
Different training samples will give different models that vary in predictions for the same test sample

“Noise”: irreducible error due to data/problem

Bias: error when optimal model is learned from infinite data

Above is for regression.
But same error = variance + noise + bias? holds for classification error and logistic regression.

See this for derivation Fig Sources

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Error

Underfitting

Overfitting

Optimum Model Complexity

&

Total Error

Variance

Model Complexity

How to detect high variance:
« Test error is much higher than
training error

How to detect high bias or noise:
* The training error is high

As you increase model complexity:

» Training error will decrease

« Test error may decrease (if you are
currently “underfitting”) or increase (if
you are “overfitting”)

Performance vs training size

As we get more training data:
Fived model 1. The same model has more difficulty
Ixed mode fitting the training data
2. But the test error becomes closer to
training error (reduced generalization
error)
Due to limited training data .
Testing (model variance) and 3. Overall test performance improves
o) distribution shift
L]
\ Test error with infinite training examples . . .
Due to difference in P(y|x) in
" Train error with infinite training examples training and test (function shift)
e
. Training \
Number of Training Examples

Due to limited power of model
(model bias) and unavoidable
intrinsic error (Bayes optimal
error)

Classification methods

Nearest Neighbor Naive Bayes Logistic Regression
Type Instance-Based Probabilistic Probabilistic
Decision Partition by example distance Usually linear Usually linear
Boundary
i* = argmin dist(X¢m [i], x Ply=a %)
Model / e Kern[i], x) y* = argmaan(xily)P(y) ©OTxrb » l"ﬁ Plywox)
Prediction * = [i*] y .
Y =Ytrn ; .
y* = argmax P(y|x)
y
Strengths * Low bias * Estimate from limited data * Powerful in high
* No training time * Simple dimensions
* Widely applicable * Fast training/prediction * Widely applicable
* Simple * Good confidence
estimates
* Fast prediction
Limitations * Relies on good input features * Limited modeling power * Relies on good
* Slow prediction (in basic input features

implementation)

Classification methods (extended)

assuming x in {0 1}

Learning Objective Training Inference /
0,'x+0,"(1-x)>0 J/
o logP(x,.. |yl.;9.) 25()@.. =1ny, :k)+r Pl =1yy=1)
Na|ve maximizez ; ij J 5 if where 6,; —logT—)P o =1ly=0)
v S(y, =k)+K =0]y=
Bayes " | +10gP(y,:6,) >.8(y, =k)+Kr oy Pl =01=1)
; (VA Ogm
icti minimiz —log(P(y;|x,0)) + A|10]|
Logistic _ - ezi oelP0ib) Gradient descent 0'x>1
Regression where P(yix,0) = 1/(1 + exp(~y;67x))
o 1
Linear minimize ’12951' +§”0” Quadratic programming .
SVM such that y,0'x>1-¢& Vi, & >0 or subgradient opt. 0°x>1
Kernelized complicated to write Quadratic Zya' K(%,,x)>0
SVM programming — i
Nearest Vi
Neighbor most similar features - same label Record data

where i = argmin K (%,,x)

l

* Notation may differ from previous slide

Regression methods

Nearest Neighbor Naive Bayes Linear Regression
Type Instance-Based Probabilistic Data fit
Decision Partition by example distance Usually linear Linear
Boundary
i* = argmin dist(X,.,[i], x *=wlyx
Prediction V* = Vern [17] y ;
Strengths * Low bias * Estimate from limited data * Powerful in high
* No training time * Simple dimensions
* Widely applicable * Fast training/prediction * Widely applicable
* Simple * Fast prediction
* Coefficients may be
interpretable
Limitations * Relies on good input features * Limited modeling power * Relies on good
* Slow prediction (in basic input features
implementation)

Entropy and Information Gain

uncertainty of X

e Specific conditional entropy,
H(X|Y = y): measures HX|Y =y) =—) P(X = x|V = y)log, P(X = x|V =
uncertainty of X if Y is known A= Z (" yloes =y
to have a particular value

* Conditional entropy H(X|Y): H(X|Y) = _z H(X|Y = y)P(Y =)
measures expected uncertainty >
of X if | know Y

* Information gain I(X|Y):
measures how much knowing Y [(X|Y) =HX) - HX|Y)
would reduce my uncertainty in
X

* Entropy, H(X): measures H(X) = —z P(X =x)log, P(X = x)
X

Deep Learning

Pegasos with mini-batch

e Calculating gradient based on multiple examples reduces

variance of gradient estimate

INPUT: S, N\, T,k
INITIALIZE: Set w1 = 0
For t=1.2,....7T
Choose A: C |m], where
Set Aj — {é e At 1 y; <Wt,_X«gj> < 1}
Set e = ﬁ
Set Wiyt + (L—ne N)we + 4 >

OUTPUT: W11

At| = k, uniformly at random

Yi X4

k: batch size

m: number of training samples
A;: batch of examples

A7 : examples within margin

S: training set

A: regularization weight

T: number iterations

w;: model weights

x;: features for example i
y;: label for example i

1. step size (“learning rate”)

Adam: Adaptive Moment Estimation

Adam:
m;=8 -m;+ (1 —p) gws) [momentum, 8 = 0.9]
gsqt) =€-gsqt—1) + (1 —€)- g(w)* [RMSProp, € = 0.999]

Awy = —n 'mt/\/ YIsq (we)

Wep1 = W + Awy

AdamW is widely used and easier to
tune than SGD + momentum

AlexNet CNN

48

s

Max
pooling

48

128

27

128

192

13

-
ar®

T
af=

2048

048

%]

dense

Max
pooling

192

152

128 Max

pooling

dense

looo

ResNet Block

weight layer

l relu

weight layer

p
identity

ResNet - 18

class Network (nn.Module) :

def init (self, num classes=1000):

super (). init ()

resblock = ResBlock

self.layer0 = nn.Sequential (
nn.Conv2d (3, 64, kernel size=7, stride=2, padding=3),
nn.MaxPool2d (kernel size=3, stride=2, padding=1l),
nn.BatchNorm2d (64),
nn.ReLU ()

)

self.layerl = nn.Sequential (
resblock (64, 64, downsample=False),
resblock (64, 64, downsample=False)
)

self.layer?2 = nn.Sequential (
resblock (64, 128, downsample=True),
resblock (128, 128, downsample=False)
)

self.layer3 = nn.Sequential (
resblock (128, 256, downsample=True),
resblock (256, 256, downsample=False)
)

self.layer4 = nn.Sequential (
resblock (256, 512, downsample=True),
resblock (512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes)

def forward(self, input):

input = self.layer0 (input)
input = self.layerl (input)
input = self.layer2 (input)
input = self.layer3 (input)
input = self.layer4 (input)

input = self.gap (input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

Transformer Block

Transformer Encoder

A
MLP |

A

Norm

Multi-Head
Attention

&
|

Embedded
Patches

BERT

ﬂp Mask LM Mask LM \
= =

*
00 e A)

BERT

EeLe E, |.. E, E[S EP] E, E.

. A~ A~ s s

|_| L L1 L1 L] L]
s || okt |

'
Tok M [SEF’]] Tok 1

TokM

Masked Sentence A Masked Sentence B
. »
Unlabeled Sentence A and B Pair

Pre-training

GPT Series

e All Transformer-based, similar to BERT

* GPT: generative-pretraining (GPT) is effective for large
language models

— Learns to predict the next word given preceding words

 GPT-2: GPT models can perform reasonable zero-shot task
performance with larger models trained on more data

 GPT-3: Even larger GPT models trained on even more data are
good at many tasks, especially text generation, and can be
“trained” at inference time with in-context examples

CLIP: Learning Transferrable Models from Natural
Language Supervision (Radford et al. 2021)

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the ‘
aussie pup _— T=l I & photo of 3 Text
Encoder o "l a {objectl. Encoder
Y Y Y Y
T T. T; Ty
— I] I]_ T] I]_T Il T I]_ T\; . .
(3) Use for zero-shot prediction v v v v
—}- I: I] 'T'_ IE 'TE I] T Ig 'TN' T]. Tz T3 TN
Image . . . :
— 1 » I LT | LT [T | . [LTy Ima
Encoder S I ° g I LT | LT | T I, Ty
Encoder | ! 171152 A3 1K
¥

> Iy | | Ty | Ty [T | L | LyTy & photo of

How to apply linear probe

Pre-compute features method

1. Load pretrained model (many
available)

https://pytorch.org/vision/stable/model
s.html

2. Remove prediction final layer

3. Apply model to each image to get
features; save them with labels

4. Train new linear model (e.g. logistic
regression or SVM) on the features

import torch
import torch.nn as nn
from torchvision import models

model = models.alexnet(pretrained=True)

new _classifier = nn.Sequential(*1ist(model.classifier.children())[:-1])

model.classifier = new_classifier

Freeze encoder method

1. Load pretrained model (many
available)

https://pytorch.org/vision/stable/m
odels.html
2. Set network to not update
weights
3. Replace last layer

4. Retrain network with new
dataset

- Slower than method on left but
does not require storing features,
and can apply data augmentation

model = torchvision.models.vggl9(pretrained=True)
for param in model.parameters():

param.requires_grad = False

Replace the last fully-connected layer

Parameters of newly constructed modules have requires_grad=True by default
model.fc = nn.Linear(512, 8) # assuming that the fc7 layer has 512 neurons, other
model.cuda()

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

How to apply fine-tuning

1. Load pre-trained model
2. Replace last layer

3. Setalow learning rate (e.g. Ir=e-4)

— Very sensitive to learning rate because you want to improve but not drift too far from
the initial model -- learning rate is the most critical parameter for fine-tuning!

— Learning rate is often at least 10x lower than from “scratch” training

— Can “warm start” by freezing earlier layers initially and then unfreezing after a few
epochs when the linear layer is mostly trained (avoids messing up encoder while
classifier is adjusting), or start learning rate near zero and increase slowly over several
epochs

— Can set lower learning rate for earlier layers

target class = 37

model = torch.hub.load(pytorch/vision:ve.18.0", 'resnet34’, pretrained=True)
model.fc = nn.Linear(512, target class)

In this example, last layer has 512 input features and is called “fc”

Comparing linear probe, fine-tuning, and training from
scratch, when does each have an advantage and why?

en)=a+1n-n?
100

an 1 ‘.44.—,14'-_’/"/

60

ResNet18, Err vs # examples / class (in paren)

: Green: Train from scratch
. Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet
o0 : etr; Linear (eqo0 = 79.20; Ao = 1.32; o 0.84)
- / 18; No Pretr; Finetune (eqgq = 27.91; Sy00 = 18.23; ~ 0.41)
m— R18:; Pretr; Linear (egop = 32.42; Gygp = 5.61; ~ 0.35) .
= R18; Pretr; Finetune (egon = 18.86; G = 7.28; 0.57) Very Ilttle data
% 0.05 01 015 02 025 » Use linear probe on pre-trained model
(o) (400) (100) (45) (25) (16)
400+ examples per class ! 16 examples per class

Moderate data

(a) Transfer: ImageNet to Cifar100 + Fine-tune pre-trained model

“Learning Curves” (2021) pdf Very large dataset

» Either fine-tune or train from scratch

https://arxiv.org/abs/2010.11029

Summaries

KNN Classification (L2)

Foundation of ML: similar features predict X «
similar labels o
— Hard part: How to represent inputs with X X X
vectors that reflect the similarity @
0

0 X
KNN is a simple but effective classifier that o ?

predicts the label of the most similar
training example(s) O o

— Accuracy depends on quality of features
and number of training samples X1

A%

Larger K gives a smoother prediction
function

Test image N =100 N = 1000 N =10000

/

7 7

5

Measure classification performance with
error and confusion matrices

Working with Data (L2)

 Datais a set of numbers that contains information. Images, audio, signals, tabular data and everything else
must be represented as a vector of numbers to be used in ML.

* Information is the power to predict something — a lot of the challenge in ML is in transforming the data to
make the desired information more obvious

* In machine learning, we have
Sample: a data point, such as a feature vector and label corresponding to the input and desired output of the model
Dataset: a collection of samples
Training set: a dataset used to train the model
Validation set: a dataset used to select which model to use or compare variants and manually set parameters
Test set: a dataset used to evaluate the final model

* In a classification problem, the goal is to map from features to a categorical label (or “class”)

* Nearest neighbor (or K-NN) algorithm can perform classification by retrieving the K nearest neighbors to the
guery features and assigning their most common label

e We can measure error and confusion matrices to show the fraction of mistakes and what kinds of mistakes
are made

KNN can be used for either classification
(return most common label) or regression
(return average target value)

Regression error measures
— Root mean squared error(RMSE)

1
(EEG) -y
_ ZiF&)-y)?
Zi(J’i_T)Z

— R%: 1

Test error is composed of

— Irreducible error (perfect prediction not
possible given features)

— Bias (model cannot perfectly fit the true
function)

— Variance (parameters cannot be perfectly
learned from training data)

KNN Regression & Generalization (L3)

Similarity/distance measures: L1, L2, cosine

Error

o
x2
X1
Under-fitting Overfitting
[A | A 1
Test error

Train error

eneralizatior

1 Error

Complexity/Precision of Model
K=5 K=1

Clustering (L4)

* Use highly optimized libraries like
FAISS for search/retrieval

* Approximate search methods like
LSH can be used to find similar
points quickly

e Clustering groups similar data
points

 K-means is the must-know method,
but there are many others

@,
@,
o
(] B
S [8
O
o o]
O B
[
EIDD‘

PCA/Embedding (L5)

YA
* PCA reduces dimensions by linear projection s —7u
— Preserves variance to reproduce data as well as f,:':»._;_;a ﬂx/
possible, according to mean squared error ,:TH:.:..f:-';;ff:i.;xf
— May not preserve local connectivity structure or g/_””)‘
discriminative information
>
X
* Other methods try to preserve relationships 5
between points -
10 1
— MDS: preserve pairwise distances ° .
— IsoMap: MDS but using a graph-based distance ’ . . g
— t-SNE: preserve a probabilistic distribution of ° gle 7 q!,-,*s';%
neighbors for each point (also focusing on closest o Wiz 4 ° g
points) oo =
. 27 5
— UMAP: incorporates k-nn structure, spectral] ¥
embedding, and more to achieve good embeddings 01 g
relatively quickly L :

=]

Li n ea r Reg ress i O n (L6) Chirp frequency vs temperature in crickets

=" RA2=0.68

Linear regression fits a linear model to a
set of feature points to predict a
continuous value

Temperature

— Explain relationships
— Predict values

— Extrapolate observations

14 15 16 17 18 19 20
Frequency

Regularization prevents overfitting by

restricting the magnitude of feature
weights
— L1: prefers to assign a lot of weight to the most
useful features 60 -

64

62 1

RMSE

— L2: prefers to assign smaller weight to
everything

58

56

T T
1071 10°
lambda

Linear Classifiers (L7)

Linear logistic regression and linear SVM are
classification techniques that aims to split features
between two classes with a linear model

— Predict categorical values with confidence

Logistic regression maximizes confidence in the
correct label, while SVM just tries to be confident
enough

Non-linear versions of SVMs can also work well and
were once popular (but almost entirely replaced by
deep networks)

Nearest neighbor and linear models are the final
predictors of most ML algorithms — the complexity
lies in finding features that work well with NN or
linear models

P(circle|x) is higher

P(triangle|x) is higher

A A
A A,

A AAA ,

AAsdA
A AA

Optimized SVM Model

x1

Probability / Naive Bayes (L8)

* Probabilistic models are a large class of
machine learning methods

* Naive Bayes assumes that features are

independent given the label P(x,y) = l_[P(x;|y)P(y)
l

— Easy/fast to estimate parameters
— Less risk of overfitting when data is limited

* You can look up how to estimate parameters
for most common probability models

— Or take partial derivative of total data/label
likelihood given parameter

* Prediction involves finding y that maximizes

P(x,y), either by trying all y or solving 'Yt = 0—(8""0‘& TI P(,)(,,)Y) P(‘/)
!

partial derivative

« Maximizing log P(x, y) is equivalent to = 0‘(3‘(;0’{' Z I'{‘_’} P(_XC 2‘{) t 17’3 P(y)

maximizing P(x, y) and often much easier

EM (L9)

* EMis a widely applicable algorithm to
solve for latent variables and parameters Estimated scores

that make the observed data likely
— E-step: compute the likelihoods of the values ti ot

0.8

of the latent variables ! !

— M-step: solve for most likely model
parameters, using the likelihoods from the E- . :
step as weights !

0.2 1

* While derivation is long and somewhat - Ly

complicated, the application is simple

(Green = true; red = prediction)

* EM is used, for example, in mixture of

. . Good annotators: 0, 1, 3
Gaussian and topic models

PDF Estimation (L10)

Parametric Models

Semi-Parametric

Non-Parametric

Can fit a broad

distribution

in high dimensions

Descriotion Assumes a fixed range of functions Can fit any
P form for density with limited distribution
parameters
: . Discretization,
Gaussian, Mixture of :
Examples :) kernel density
exponential Gaussians L.
estimation
Model is able to : .
: . Low dimensional or
Good when approximately fit . 1-D data
. smooth distribution
the distribution
Model cannot Distribution is not -
. . Data is high
Not good when approximate the smooth, challenging | . .
dimensional

Robust Estimation (L11)

Median and quantiles are
robust to outliers, while
mean/min/max aren’t

Outliers can be detected as
low probability points, low :

density points, poorly
compressible points, or

through 2D visualizations 1

Least squares is not robust to
outliers. Use RANSAC or IRLS
or robust loss function
instead.

0
1
2
3
4
5
6
7
8
9

F

#*
= = = Ground Truth: m=1.00 b=0.00

Least Sguares: m=0.55 b=0.24
Robust Least Squares: m=0.96 b=0.03

¥

RANSAC: m=0.99 b=0.01
F

*e 2 *

Decision Trees (L12)

* Decision/regression trees
learn to split up the feature
space into partitions with
similar values

* Entropy is a measure of
uncertainty

* Information gain measures
how much particular
knowledge reduces prediction
uncertainty

Ensembles and Forests (L13)

 Ensembles improve accuracy and
confidence estimates by reducing Buy [(h000) — 1)%] = B [(h(x) — 50)°] + By [800 ~ 9] + Bx [(h60) — 560)’]
bias and / or variance PR— - Ve N ~

* Boosted trees minimize bias by

fixing previous mistakes

* Random forests minimize variance

by averaging over multiple
different trees

(1,%) (Z,%)

tree 1 tree T

 Random forests and boosted trees
are powerful classifiers and useful
for a wide variety of problems

m PT(C)M
Pi(c)

SGD (L14)

e Gradient descent iteratively steps
in direction of negative gradient of
loss

e Stochastic gradient descent
estimates gradient using small
batches of samples

— Faster than full gradient descent

* Linear models have limited ability
to fit the data — often need non-
linear models like multilayer
networks

X1

50 4

30

20 1

10 4

Learning rate: 0.1

0.2
0.4
0.6
0.8
1.0

MLPs and Backprop (L15)

* Perceptrons are linear prediction models

 MLPs are non-linear prediction models,
composed of multiple linear layers with non-
linear activations

Py Output

0.6

Gender
“Probability of
beingAlive”

* MLPs can model more complex functions, but
are harder to optimize

Stage

* Optimization is by a form of stochastic gradient
descent

* Deeper networks are subject to vanishing
gradient problems that are reduced (but not
eliminated) with ReLU activations

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

CNNs Keys to Deep Learning (L16)

ImageNet

* Deep networks provide huge gains in

performance o

— Large capacity, optimizable models

— Learn from new large datasets x |

weight layer
F(x) Jrelu X
. . . . weight layer identity

* RelLU and skip connections simplify Fx) 4 x

optimization

e SGD+momentum and AdamW are the
most commonly used optimizers

Deep Learning Optimization and Computer Vision (L17)

 Models trained on ImageNet are
used as pretrained “backbones” for
other vision tasks

* Mask-RCNN samples patches in
feature maps and predicts boxes,
object region, and keypoints

* Many image generation and
segmentation methods are based on
U-Net downsamples while
deepening features, then upsamples
with skip connections

New Task Encoder

— New Task Decoder

Input Encoder Decoder Output N, Class
Image- (Fine-tuned) - (Tuned) = Logits ’

UNET

Words and Attention (L18)

Sub-wprd .tokenlzathn based on byte-pair Chair is broken =
encoding is an effective way to turn natural ch##, ##air, is, brok##, ##en

text into a sequence of integers

Learned vector embeddings of these
integers model the relationships between
words

Input

Paris — France
+ Italy = Rome

(k,a,v) iterl iter2 iter3 iter4

1.000 1.497 1.818

Attention is a general processing oo
. . 8.503 8.182
mechanism that regresses or clusters values sowo s12s s1m

2.000 1.872 1.859

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

1.988
8.012
8.010

1.990

2.147
7.853
7.853

2.147

- i ~
Add & Norm

Feed
Forward

| —

’_"l Add & Norm I

Multi-Head
Attention

L

\
% J

http://nlp.seas.harvard.edu/annotated-transformer/

Transformers, Vision and Language (L19)

* Transformers are general data processors,
applicable to text, vision, audio, control, and
other domains

* Pre-training to generate missing tokens in P TN
unsupervised text data learns a general e e,
model that can be fine-tuned SERT i

- Same idea is also applicable to other domains
_ N S
 Transformer architectures are state-of-art for Pre-raining

vision and language individually

e Arguably, the biggest benefit of transformers
is ability to combine information from
multiple domains

Transformer Encoder

Embedded
Patches

CLIP and GPT (L20)

 Deep learning application often involves starting
with a pre-trained “foundation” model and fine-
tuning it

* With large-scale training and the right
formulations, models can perform a range of tasks
including those not explicitly trained

 GPT demonstrates that learning to predict the next
word produces a flexible zero-shot and few-shot
general language task performer

 CLIP shows that learning to match images to text
produces a good zero-shot classifier and an
excellent image encoder

	Recap and Review – Exam 2
	Learning a model
	Prediction using a model
	Model evaluation process
	Bias-Variance Trade-off
	Slide Number 6
	Performance vs training size
	Classification methods
	Classification methods (extended)
	Regression methods
	Entropy and Information Gain
	Deep Learning
	Pegasos with mini-batch
	Adam: Adaptive Moment Estimation
	AlexNet CNN
	ResNet Block
	ResNet - 18
	Transformer Block
	BERT
	GPT Series
	CLIP: Learning Transferrable Models from Natural Language Supervision (Radford et al. 2021)
	How to apply linear probe
	How to apply fine-tuning
	Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?
	Summaries
	KNN Classification (L2)
	Working with Data (L2)
	KNN Regression & Generalization (L3)
	Clustering (L4)
	PCA/Embedding (L5)
	Linear Regression (L6)
	Linear Classifiers (L7)
	Probability / Naïve Bayes (L8)
	EM (L9)
	PDF Estimation (L10)
	Robust Estimation (L11)
	Decision Trees (L12)
	Ensembles and Forests (L13)
	SGD (L14)
	MLPs and Backprop (L15)
	CNNs Keys to Deep Learning (L16)
	Deep Learning Optimization and Computer Vision (L17)
	Words and Attention (L18)
	Transformers, Vision and Language (L19)
	CLIP and GPT (L20)

