
Recap and
Review –
Exam 2

Applied Machine Learning
Derek Hoiem

Learning a model

• 𝑓𝑓 𝑿𝑿;𝜃𝜃 : the model, e.g. 𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙
• 𝜃𝜃: parameters of the model (e.g. 𝒘𝒘)
• (𝑿𝑿,𝒚𝒚): pairs of training samples
• 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(): defines what makes a good model

– Good predictions, e.g. minimize −∑𝑛𝑛 log𝑃𝑃(𝑦𝑦𝑛𝑛|𝒙𝒙𝑛𝑛)
– Likely parameters, e.g. minimize 𝒘𝒘𝑇𝑇𝒘𝒘

• Regularization and priors indicate preference for particular solutions, which tends to
improve generalization (for well chosen parameters) and can be necessary to obtain
a unique solution

𝜃𝜃∗ = argmin
𝜃𝜃

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓 𝑿𝑿;𝜃𝜃 ,𝒚𝒚)

Prediction using a model

𝑦𝑦𝑡𝑡 = 𝑓𝑓 𝒙𝒙𝒕𝒕;𝜃𝜃
• Given some new set of input features 𝒙𝒙𝑡𝑡, model predicts 𝑦𝑦𝑡𝑡

– Regression: output 𝑦𝑦𝑡𝑡 directly, possibly with some variance estimate
– Classification

• Output most likely 𝑦𝑦𝑡𝑡 directly, as in nearest neighbor
• Output 𝑃𝑃(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡), as in logistic regression

Model evaluation process

1. Collect/define training, validation, and test sets
2. Decide on some candidate models and hyperparameters
3. For each candidate:

a. Learn parameters with training set
b. Evaluate trained model on the validation set

4. Select best model
5. Evaluate best model’s performance on the test set

– Cross-validation can be used as an alternative
– Common measures include error or accuracy, root mean squared

error, precision-recall

Bias-Variance Trade-off

See this for derivation Fig Sources

Variance: due to limited data
Different training samples will give different models that vary in predictions for the same test sample

“Noise”: irreducible error due to data/problem

Bias: error when optimal model is learned from infinite data

Above is for regression.
But same error = variance + noise + bias2 holds for classification error and logistic regression.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

How to detect high variance:
• Test error is much higher than

training error

How to detect high bias or noise:
• The training error is high

As you increase model complexity:
• Training error will decrease
• Test error may decrease (if you are

currently “underfitting”) or increase (if
you are “overfitting”)

Underfitting Overfitting

Performance vs training size
As we get more training data:

1. The same model has more difficulty
fitting the training data

2. But the test error becomes closer to
training error (reduced generalization
error)

3. Overall test performance improvesTesting

Training
Number of Training Examples

Er
ro

r

Fixed model

Test error with infinite training examples

Train error with infinite training examples
Due to difference in P(y|x) in
training and test (function shift)

Due to limited training data
(model variance) and
distribution shift

Due to limited power of model
(model bias) and unavoidable
intrinsic error (Bayes optimal
error)

Classification methods
Nearest Neighbor Naïve Bayes Logistic Regression Decision Tree

Type Instance-Based Probabilistic Probabilistic Probabilistic

Decision
Boundary

Partition by example distance Usually linear Usually linear Partition by selected
boundaries

Model /
Prediction

𝑖𝑖∗ = argmin
𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖], 𝑥𝑥

𝑦𝑦∗ = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖∗
𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃 𝑦𝑦 𝑥𝑥

Conjunctive rules
𝑦𝑦∗ = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)

Strengths * Low bias
* No training time
* Widely applicable
* Simple

* Estimate from limited data
* Simple
* Fast training/prediction

* Powerful in high
dimensions
* Widely applicable
* Good confidence
estimates
* Fast prediction

* Explainable decision
function
* Widely applicable
* Does not require
feature scaling

Limitations * Relies on good input features
* Slow prediction (in basic
implementation)

* Limited modeling power * Relies on good
input features

* One tree tends to
either generalize poorly
or underfit the data

Classification methods (extended)

Naïve
Bayes

Logistic
Regression

Linear
SVM

Nearest
Neighbor

Kernelized
SVM

Learning Objective

()
()

∑
∑















+i
i

j
jiij

yP

yxP

0;log

;|log
maximize

θ

θ

Training

()
() Krky

rkyx

i
i

i
iij

kj +=

+=∧=
=

∑
∑

δ

δ
θ

1

Inference
()

()
()
()
()0|0

1|0
log

,
0|1
1|1

log where

 01

0

1

01

==

==
=

==

==
=

>−+

yxP
yxP

yxP
yxP

j

j
j

j

j
j

TT

θ

θ

xθxθ

m𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑖𝑖

−log 𝑃𝑃 𝑦𝑦𝑖𝑖|𝐱𝐱,𝛉𝛉 + 𝜆𝜆 𝛉𝛉

where 𝑃𝑃 𝑦𝑦𝑖𝑖|𝐱𝐱,𝛉𝛉 = 1/ 1 + exp −𝑦𝑦𝑖𝑖𝛉𝛉𝑇𝑇𝐱𝐱
Gradient descent tT >xθ

 tT >xθ
Quadratic programming
or subgradient opt.0 , 1 such that

2
1 minimize

≥∀−≥

+∑

ii
T

i

i
i

iy ξξ

ξλ

xθ

θ

Quadratic
programming

complicated to write

most similar features  same label Record data

()∑ >
i

iii Ky 0,ˆ xxα

()xx ,ˆ argmin where

i
i

i

Ki
y

=

assuming x in {0 1}

* Notation may differ from previous slide

Regression methods
Nearest Neighbor Naïve Bayes Linear Regression Decision Tree

Type Instance-Based Probabilistic Data fit Probabilistic

Decision
Boundary

Partition by example distance Usually linear Linear Partition by selected
boundaries

Model /
Prediction

𝑖𝑖∗ = argmin
𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖], 𝑥𝑥

𝑦𝑦∗ = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖∗
𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)
𝑦𝑦∗ = 𝑤𝑤𝑇𝑇𝑥𝑥 Conjunctive rules

𝑦𝑦∗ = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)

Strengths * Low bias
* No training time
* Widely applicable
* Simple

* Estimate from limited data
* Simple
* Fast training/prediction

* Powerful in high
dimensions
* Widely applicable
* Fast prediction
* Coefficients may be
interpretable

* Explainable decision
function
* Widely applicable
* Does not require
feature scaling

Limitations * Relies on good input features
* Slow prediction (in basic
implementation)

* Limited modeling power * Relies on good
input features

* One tree tends to
either generalize poorly
or underfit the data

Entropy and Information Gain
• Entropy, 𝐻𝐻(𝑋𝑋): measures

uncertainty of X
• Specific conditional entropy,
𝐻𝐻(𝑋𝑋|𝑌𝑌 = 𝑦𝑦): measures
uncertainty of 𝑋𝑋 if 𝑌𝑌 is known
to have a particular value

• Conditional entropy 𝐻𝐻 𝑋𝑋 𝑌𝑌 :
measures expected uncertainty
of 𝑋𝑋 if I know 𝑌𝑌

• Information gain 𝐼𝐼(𝑋𝑋|𝑌𝑌):
measures how much knowing 𝑌𝑌
would reduce my uncertainty in
𝑋𝑋

𝐻𝐻 𝑋𝑋 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = −�
𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃(𝑌𝑌 = 𝑦𝑦)

I 𝑋𝑋|𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻(𝑋𝑋|𝑌𝑌)

Deep Learning

Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)

Adam: Adaptive Moment Estimation
Adam:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡 + 1 − 𝛽𝛽 ⋅ 𝑔𝑔(𝑤𝑤𝑡𝑡) [momentum, 𝛽𝛽 = 0.9]
𝑔𝑔𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑡𝑡 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2 [RMSProp, 𝜖𝜖 = 0.999]

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡/ 𝑔𝑔𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡)
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

AdamW is widely used and easier to
tune than SGD + momentum

AlexNet CNN

ResNet Block

ResNet - 18
class Network(nn.Module):

def __init__(self, num_classes=1000):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

Transformer Block

BERT

GPT Series

• All Transformer-based, similar to BERT

• GPT: generative-pretraining (GPT) is effective for large
language models
– Learns to predict the next word given preceding words

• GPT-2: GPT models can perform reasonable zero-shot task
performance with larger models trained on more data

• GPT-3: Even larger GPT models trained on even more data are
good at many tasks, especially text generation, and can be
“trained” at inference time with in-context examples

CLIP: Learning Transferrable Models from Natural
Language Supervision (Radford et al. 2021)

How to apply linear probe
Pre-compute features method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/model
s.html

2. Remove prediction final layer
3. Apply model to each image to get

features; save them with labels
4. Train new linear model (e.g. logistic

regression or SVM) on the features

Freeze encoder method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/m
odels.html

2. Set network to not update
weights

3. Replace last layer
4. Retrain network with new

dataset
- Slower than method on left but
does not require storing features,
and can apply data augmentation

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

How to apply fine-tuning
1. Load pre-trained model
2. Replace last layer
3. Set a low learning rate (e.g. lr=e-4)

– Very sensitive to learning rate because you want to improve but not drift too far from
the initial model -- learning rate is the most critical parameter for fine-tuning!

– Learning rate is often at least 10x lower than from “scratch” training
– Can “warm start” by freezing earlier layers initially and then unfreezing after a few

epochs when the linear layer is mostly trained (avoids messing up encoder while
classifier is adjusting), or start learning rate near zero and increase slowly over several
epochs

– Can set lower learning rate for earlier layers

In this example, last layer has 512 input features and is called “fc”

ResNet18, Err vs # examples / class (in paren)

Green: Train from scratch
Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet

“Learning Curves” (2021) pdf

16 examples per class400+ examples per class

Comparing linear probe, fine-tuning, and training from
scratch, when does each have an advantage and why?

Very little data
• Use linear probe on pre-trained model

Moderate data
• Fine-tune pre-trained model

Very large dataset
• Either fine-tune or train from scratch

https://arxiv.org/abs/2010.11029

Summaries

KNN Classification (L2)

• Foundation of ML: similar features predict
similar labels
– Hard part: How to represent inputs with

vectors that reflect the similarity

• KNN is a simple but effective classifier that
predicts the label of the most similar
training example(s)
– Accuracy depends on quality of features

and number of training samples

• Larger K gives a smoother prediction
function

• Measure classification performance with
error and confusion matrices

Working with Data (L2)

• Data is a set of numbers that contains information. Images, audio, signals, tabular data and everything else
must be represented as a vector of numbers to be used in ML.

• Information is the power to predict something – a lot of the challenge in ML is in transforming the data to
make the desired information more obvious

• In machine learning, we have
Sample: a data point, such as a feature vector and label corresponding to the input and desired output of the model
Dataset: a collection of samples
Training set: a dataset used to train the model
Validation set: a dataset used to select which model to use or compare variants and manually set parameters
Test set: a dataset used to evaluate the final model

• In a classification problem, the goal is to map from features to a categorical label (or “class”)

• Nearest neighbor (or K-NN) algorithm can perform classification by retrieving the K nearest neighbors to the
query features and assigning their most common label

• We can measure error and confusion matrices to show the fraction of mistakes and what kinds of mistakes
are made

KNN Regression & Generalization (L3)
• Similarity/distance measures: L1, L2, cosine

• KNN can be used for either classification
(return most common label) or regression
(return average target value)

• Regression error measures
– Root mean squared error(RMSE)

1
N
∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

– R2: 1 − ∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 −𝑦𝑦𝑖𝑖 2

∑𝑖𝑖 𝑦𝑦𝑖𝑖−�𝒚𝒚 2

• Test error is composed of
– Irreducible error (perfect prediction not

possible given features)
– Bias (model cannot perfectly fit the true

function)
– Variance (parameters cannot be perfectly

learned from training data)

Clustering (L4)

• Use highly optimized libraries like
FAISS for search/retrieval

• Approximate search methods like
LSH can be used to find similar
points quickly

• Clustering groups similar data
points

• K-means is the must-know method,
but there are many others

PCA/Embedding (L5)
• PCA reduces dimensions by linear projection

– Preserves variance to reproduce data as well as
possible, according to mean squared error

– May not preserve local connectivity structure or
discriminative information

• Other methods try to preserve relationships
between points
– MDS: preserve pairwise distances
– IsoMap: MDS but using a graph-based distance
– t-SNE: preserve a probabilistic distribution of

neighbors for each point (also focusing on closest
points)

– UMAP: incorporates k-nn structure, spectral
embedding, and more to achieve good embeddings
relatively quickly

Linear Regression (L6)

• Linear regression fits a linear model to a
set of feature points to predict a
continuous value
– Explain relationships
– Predict values
– Extrapolate observations

• Regularization prevents overfitting by
restricting the magnitude of feature
weights

– L1: prefers to assign a lot of weight to the most
useful features

– L2: prefers to assign smaller weight to
everything

Linear Classifiers (L7)
• Linear logistic regression and linear SVM are

classification techniques that aims to split features
between two classes with a linear model
– Predict categorical values with confidence

• Logistic regression maximizes confidence in the
correct label, while SVM just tries to be confident
enough

• Non-linear versions of SVMs can also work well and
were once popular (but almost entirely replaced by
deep networks)

• Nearest neighbor and linear models are the final
predictors of most ML algorithms – the complexity
lies in finding features that work well with NN or
linear models

Probability / Naïve Bayes (L8)
• Probabilistic models are a large class of

machine learning methods

• Naïve Bayes assumes that features are
independent given the label
– Easy/fast to estimate parameters
– Less risk of overfitting when data is limited

• You can look up how to estimate parameters
for most common probability models
– Or take partial derivative of total data/label

likelihood given parameter

• Prediction involves finding y that maximizes
𝑃𝑃(𝑥𝑥,𝑦𝑦), either by trying all 𝑦𝑦 or solving
partial derivative

• Maximizing log𝑃𝑃(𝑥𝑥,𝑦𝑦) is equivalent to
maximizing 𝑃𝑃(𝑥𝑥,𝑦𝑦) and often much easier

𝑃𝑃 𝒙𝒙,𝑦𝑦 = �
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

EM (L9)

• EM is a widely applicable algorithm to
solve for latent variables and parameters
that make the observed data likely
– E-step: compute the likelihoods of the values

of the latent variables
– M-step: solve for most likely model

parameters, using the likelihoods from the E-
step as weights

• While derivation is long and somewhat
complicated, the application is simple

• EM is used, for example, in mixture of
Gaussian and topic models

(Green = true; red = prediction)

Good annotators: 0, 1, 3

Estimated scores

PDF Estimation (L10)

Parametric Models Semi-Parametric Non-Parametric

Description Assumes a fixed
form for density

Can fit a broad
range of functions
with limited
parameters

Can fit any
distribution

Examples Gaussian,
exponential

Mixture of
Gaussians

Discretization,
kernel density
estimation

Good when
Model is able to
approximately fit
the distribution

Low dimensional or
smooth distribution 1-D data

Not good when
Model cannot
approximate the
distribution

Distribution is not
smooth, challenging
in high dimensions

Data is high
dimensional

Robust Estimation (L11)

Median and quantiles are
robust to outliers, while
mean/min/max aren’t

Outliers can be detected as
low probability points, low
density points, poorly
compressible points, or
through 2D visualizations

Least squares is not robust to
outliers. Use RANSAC or IRLS
or robust loss function
instead.

Decision Trees (L12)
• Decision/regression trees

learn to split up the feature
space into partitions with
similar values

• Entropy is a measure of
uncertainty

• Information gain measures
how much particular
knowledge reduces prediction
uncertainty

Ensembles and Forests (L13)

• Ensembles improve accuracy and
confidence estimates by reducing
bias and/or variance

• Boosted trees minimize bias by
fixing previous mistakes

• Random forests minimize variance
by averaging over multiple
different trees

• Random forests and boosted trees
are powerful classifiers and useful
for a wide variety of problems

SGD (L14)

• Gradient descent iteratively steps
in direction of negative gradient of
loss

• Stochastic gradient descent
estimates gradient using small
batches of samples
– Faster than full gradient descent

• Linear models have limited ability
to fit the data – often need non-
linear models like multilayer
networks

MLPs and Backprop (L15)

• Perceptrons are linear prediction models

• MLPs are non-linear prediction models,
composed of multiple linear layers with non-
linear activations

• MLPs can model more complex functions, but
are harder to optimize

• Optimization is by a form of stochastic gradient
descent

• Deeper networks are subject to vanishing
gradient problems that are reduced (but not
eliminated) with ReLU activations

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

CNNs Keys to Deep Learning (L16)
• Deep networks provide huge gains in

performance
– Large capacity, optimizable models
– Learn from new large datasets

• ReLU and skip connections simplify
optimization

• SGD+momentum and AdamW are the
most commonly used optimizers

ImageNet

Deep Learning Optimization and Computer Vision (L17)

• Models trained on ImageNet are
used as pretrained “backbones” for
other vision tasks

• Mask-RCNN samples patches in
feature maps and predicts boxes,
object region, and keypoints

• Many image generation and
segmentation methods are based on
U-Net downsamples while
deepening features, then upsamples
with skip connections

Words and Attention (L18)
Sub-word tokenization based on byte-pair
encoding is an effective way to turn natural
text into a sequence of integers

Attention is a general processing
mechanism that regresses or clusters values

Input
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Learned vector embeddings of these
integers model the relationships between
words

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Paris – France
+ Italy = Rome

Chair is broken 
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/

Transformers, Vision and Language (L19)
• Transformers are general data processors,

applicable to text, vision, audio, control, and
other domains

• Pre-training to generate missing tokens in
unsupervised text data learns a general
model that can be fine-tuned
- Same idea is also applicable to other domains

• Transformer architectures are state-of-art for
vision and language individually

• Arguably, the biggest benefit of transformers
is ability to combine information from
multiple domains

CLIP and GPT (L20)

• Deep learning application often involves starting
with a pre-trained “foundation” model and fine-
tuning it

• With large-scale training and the right
formulations, models can perform a range of tasks
including those not explicitly trained

• GPT demonstrates that learning to predict the next
word produces a flexible zero-shot and few-shot
general language task performer

• CLIP shows that learning to match images to text
produces a good zero-shot classifier and an
excellent image encoder

	Recap and Review – Exam 2
	Learning a model
	Prediction using a model
	Model evaluation process
	Bias-Variance Trade-off
	Slide Number 6
	Performance vs training size
	Classification methods
	Classification methods (extended)
	Regression methods
	Entropy and Information Gain
	Deep Learning
	Pegasos with mini-batch
	Adam: Adaptive Moment Estimation
	AlexNet CNN
	ResNet Block
	ResNet - 18
	Transformer Block
	BERT
	GPT Series
	CLIP: Learning Transferrable Models from Natural Language Supervision (Radford et al. 2021)
	How to apply linear probe
	How to apply fine-tuning
	Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?
	Summaries
	KNN Classification (L2)
	Working with Data (L2)
	KNN Regression & Generalization (L3)
	Clustering (L4)
	PCA/Embedding (L5)
	Linear Regression (L6)
	Linear Classifiers (L7)
	Probability / Naïve Bayes (L8)
	EM (L9)
	PDF Estimation (L10)
	Robust Estimation (L11)
	Decision Trees (L12)
	Ensembles and Forests (L13)
	SGD (L14)
	MLPs and Backprop (L15)
	CNNs Keys to Deep Learning (L16)
	Deep Learning Optimization and Computer Vision (L17)
	Words and Attention (L18)
	Transformers, Vision and Language (L19)
	CLIP and GPT (L20)

