ransformers
Language
Nlelg
Applied Machine Learning

Derek Hoiem

and V

g

. - -
J;JMJW.w % lhv - 2

@ e Ee= e @
O ,.61 r..m (B mw.iﬁaé

ity i

mn H ' ang .Hq..cv.n_.

Self-attention, in simple words

1. Project the input token values into query, key, and value vectors using
(linear) weight matrices

2. Using keys and queries, compare each input token to all the tokens
(including itself) to get a similarity score

3. Replace the input values with a similarity-weighted sum of all values

Transformers: general data processors

o Input tokens can represent anything: image

4 Y

|
patches, text tokens, audio, controls, etc. Add & Norm J
Feed
Fori?ard
'y
e Invariant to order of tokens: add positional
. . : : N Add & Norm)
embedding to distinguish pos/type of input ————
Attention
1
o Transformer block: N\ /
> Apply multi-head attention EEF'E';TA;' @—(ﬁ
o Apply 2-layer MLP with ReLU to each token separately input
- Residual and layer norm (over all tokens) after each Embeiddmg
Inpuls

e Can stack any number of transformer blocks

Attention is all you need

https://arxiv.org/abs/1706.03762

Positional encodings

e Transformer processing does not depend
on position of token

o This is kind of similar to convolution, as each
“patch” or token vector is processed

independently, but no overlap between
patches

o But to compare between tokens, relative
position may be important

o Sinusoidal encoding (on right) is such that
a dot product between encodings
corresponds to positional similarity

e Learned or even fixed random encodings
also work similarly in practice

PE (pos.2i) = sin(pos/10000%"/ dmser)
PE(pos 2i41) = cos(pos/10000%/ dms)

Positional
Encoding

Input
Embedding

I

Inpuls

Remember from last class

Sub-wprd .tokenlzathn based on byte-pair Chair is broken =
encoding is an effective way to turn natural ch##, ##air, is, brok##, ##en

text into a sequence of integers

Learned vector embeddings of these Paris — France
integers model the relationships between + ltaly = Rome
words
(II?,Z?Vt) iterl iter2 iter3 iter4
Attention is a general processing g e R
. . 8.503 8.182 8.012 7.853
mechanism that regresses or clusters values sow s1s 5101 5010 7653
2.000 1.872 1.859 1.990 2.147
P r=rim)
Stacked transformer blocks are a powerful =
network architecture that alternates —
attention and MLPs [y
Further reading: http://nlp.seas.harvard.edu/annotated-transformer/ L R)

http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/

Ql

https://tinyurl.com/AML441-L19

o

O et

https://tinyurl.com/AML441-L19
https://tinyurl.com/AML441-L19
https://tinyurl.com/AML441-L19

Today’s Lecture

* Language Transformer architecture

 BERT: Large Language Model

* ViT (Vision Transformer): Image classification
* CNN vs Transformer comparison

* Unified-10: Sequence-to-sequence vision-language

Language Transformer: Complete Architecture

Cutput

Probabilities
 WordPiece tokens (integers) are)
mapped to learned 512-d vectors CEE) pecoder
* Positional encoding added to each (N~
vector . Forvard
* N=6 transformer blocks applied to)) | e |,
In pUt — Adi‘:-;;”m] hlﬂi-ﬂiliiid Attention
* Until <EOS> is output: = o7)™
— Process input + output so far e | —~(AgE Nom) [Adjilﬂ”‘) [ser
1 ulti-Hea ulti-Hea Attention
— Output most likely word (after more set. (] [N ol I |
attention blocks and linear model) o — \ —),
* Encoder/decoder architecture for Positonel (N, L Positona
Eﬂ(:i](]lﬂf_] (r)_® [:r]codmg
sequence to sequence tasks L —
Embedding Embedding
I
Inputs Outputs

Attention is all you need (shifted right)

https://arxiv.org/abs/1706.03762

Application to Translation

* English-German
— 4.5M sentence pairs
— 37K tokens
* English-French
— 36M sentences
— 32K tokens

e Base models trained on 8 P100s for 12
hours

* Big models (2x token dim, 3x training steps)
trained for 3.5 days

 Adam optimizer: learning rate ramps up for
4K iterations, then down

* Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Cutput

Probabilities
t
| Softmax |
t
| Linear)
4 B
[Add & Norm Je=
Feed
Forward
s I ~ | Add & Norm Je= i
~—("Add & Norm) = Cross-
I Multi-Head Attention
Feed Attention
Forward J) J) J) N
—l
N | Add & Norm Je
~—>{ Add & Norm] N Tacked Self-
Self- Multi-Head Multi-Head Attention
Attention Attention Attention
* 3 ’ t 3 }

— J o v,
Positional ®_@ Positional
Encoding . Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 102
GNMT + RL [38] 24.6 39.92 2.3-10 1.4-102°
ConvS2S [9] 25.16 40.46 0.6-10% 1.5.102°
MokE [32] 26.03 40.56 2.0-107 1.2-10%Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10% 1.1-102t
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 23.1019

|
|

https://arxiv.org/abs/1810.04805

A’SF’

|
|

BERT (Devlin et al. 2019)

*

Mask LM

*

Mask LM

x*

A)

E['::l-S] E1 EN E[SEF'] E1, EI'n'l
—T—{ 17 & 17 17
e ™ A ™
[CLS] Tok 1 Tok M [SEF] Tok1 | .. TokM
| | | p
Masked Sentence A Masked Sentence B ;
\ Unlabeled Sentence A and B Pair /
Pre-training

MNLI /@2 /SQuAD
| f !
| |I f

——,

Start/End Span \

AL

Question Answer Pair

/

Fine-Tuning

2 —a—a
e ln - s v -
BERT
E[cm] E1 EN E[SEP] E1’ EM,
o o e
LI LI L ! L] LT L
e M N N N
[CLS] Tok 1 Tok N [SEP] Tok 1 s
| | _J
Question Paragraph
*

https://arxiv.org/abs/1810.04805

Why is BERT worth knowing? (100K citations)

BERT is a significant breakthrough in NLP
* One of the first LLMs
* Transformer-based architecture
* Pre-training on large amounts of text data via masking
objective
* Fine-tuned to achieve SotA for many tasks
* Still widely used

Overview of BERT

* Uses standard transformer blocks, encoder only
— Base: 12 layers, 768-dim, 12 heads; 110M parameters
— Large: 24 layers, 1024-dim, 16 heads; 340M parameters
* WordPiece: 30K tokens
— Special [CLS] and [SEP] tokens

— Positional and sentence embeddings

* Pre-trained with masked language modeling (MLM) and next
sentence prediction

 Fine-tuned for other tasks

BERT: Input representation

My hy ra A T S ™ e ™
Input [CLS] my dog is (cute [SEP] he (likes W(play W ##ing [SEP]
Token
Embeddings E['CLS] Em',r Edc-g Eis E L E[‘SEIZ’] Ehe Elk Epl ¥ E“ing E:SEF‘]
L L L L L L L L L L L
Segment
Embeddings EA EA EA EA EA EA EE! EB EB EB. EE!
L L L L L L L L L L L
Position
Embeddings E[] E1 EE E3 E4 ES Ef:'. E‘f' EB EQ Em

 WordPiece: 30K tokens

— Specia
e [CLS]

* [SEP

tokens
at start to encode sentence summary
to separate sentences or question and answer

— Positional and sentence embeddings

“Encoder-only” and “Decoder-only” architectures

Encoder-only (e.g. BERT): Each token
attends to all input tokens (bidirectional).
May output a single vector (CLS) or one per

Decoder-only (e.g. GPT): Each token attends
to only the preceding tokens (causal) and
outputs a prediction of the next token.

token.
Output
Probabilities
‘7
— Output Token (1 oy (RN [T é?
: ectors Jy A A /)
Linear FFNN]
‘ (Decoder Block 1‘
(YR 2 (Decoder Block Leyiet New
f"l orm l : A
Feed (Decoder Block
Forward ? % ? 3 647
— Position Embedding T
Nx | —(Add8 Norm) é) q-D [Masked Self-Attention |
Multi-Head Input Token I I | | | I l | | | l | I I | | \ *
Attention Vectors \ Layer Norm
\
At . A
A —— y, \
Positional 5 Figure: https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
Encoding
Input
Embedding
Inputs

Figure: https://towardsdatascience.com/a-complete-guide-to-bert-with-code-9f87602e4a11/

Pre-training with masked language modeling (MLM)
~

\

 Randomly select 15% of text tokens ﬂ;p Mask LM Mask LM

to be “masked” and predicted by e - - LS

based on surrounding tokens g = G |
* Masked tokens are replaced by BERT

— [MASK] token (80% of the time) e e (e |[& 3

— Random token (10%) -ﬁ = T I

— Unchanged token (10%) ﬂ? |] (o | (o] . o
. Only masked tokens are predicted Masked Sentence A -~ Masked Sentence B

\ Unlabeled Sentence A and B Pair
Pre-training

Masking

example:

)

[cls] My dog is cute [sep] He likes play ##ing [sep]

[cls] [MASK] dog is grave [sep] He likes play ##ing [sep]

Pre-training with next sentence prediction

* |Input is two sentences A and B

* Replace B with a random /NP Maskuy as L1 N\
sentence 50% of the time | ' . |

* Predict whether B is the
original sentence or not (via

[CLS] token)

| = E
o o
ﬂ L | L[
ra
Tok M SE
| .
|

Masked Sentence A Masked Sentence B

* :
\ Unlabeled Sentence A and B Pair /

Pre-training

Pre-training and fine-tuning

* Pre-train on MLM and NSP tasks
— BooksCorpus: 800M words
— English Wikipedia: 2.5B words

— Important to use full documents, not just shuffled sentences
— BERTg ¢ trained on 16 TPU chips; BERT ,zge ON 64 chips; 4 days each

* Fine-tune on each task, takes a few hours on a GPU
— Paraphrasing

— Entailment
— Question answering

BERT results

SQuUAD: question

GLUE: General Language Understanding Evaluation — many tasks answering dataset

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average Sy stem Devy Test
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k - EM Fl EM Fl

Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 03.2 35.0 81.0 86.0 61.7 74.0

BiLSTM+ELMo+Attn 76.4/76.1 648 798 904 360 733 849 568 710 Top Leaderboard Systems (Dec 10th, 2018)

OpenAl GPT 82.1/81.4 703 874 913 454 80.0 823 560 75.1 Human - - 823 91.2

BERTgask 84.6/83.4 712 905 935 521 853 889 664 796 #1 Ensemble - nlnet - - 86.0 917

BERTLARGE 86.7/85.9 721 927 949 605 865 893 70.1 821 #2 Ensemble - QANet - - 845 905

' _ Published

Table 1: GLUE Test results, scored by the evaluan‘on server (https: //gl_;.lebem:h}:nark. COl."n/ lfeaderkg.(?ér-d}. BiDAF+ELMo (Single) - 86 - 858

The lllll]]bt?]“ t?elow each task (IEI.’lO[eS the number of training ex‘amples. The “Average™ column is slightly dlt’.rerem R.M. Reader (Ensemble) 8172 870 823 885

than the official GLUE score, since we exclude the problematic WNLI set.®* BERT and OpenAl GPT are single-

model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and Ours

accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components. BERTgask (Single) 80.8 885 - -

BERTarGE (Single) 84.1 909 - -

) . . . BERTarGE (Ensemble) 85.8 91.8 - -
MNLI: whether a sentence entails, contradicts, or is unrelated to another BERT, agcy (Sl +TriviaQA) 842 911 85.1 918

QQP: wheth.er two sent_ences are semantically equivalent BERTakcE (Ens+TriviaQA) 86.2 92.2 87.4 93.2
QNLI: question answering
SST-2: positive or negative sentiment

CoLA: whether sentence is grammatically correct Table 2: SQuAD 1.1 results. The BERT ensemble
STS-B: sentence similarity score is 7x systems which use different pre-training check-
MRPC: whether one sentence paraphrases another points and fine-tuning seeds.

RTE: whether a sentence entails a hypothesis

Key Take-aways from BERT

* Bi-directional masked language modeling is highly effective
pre-training
— Does not require supervision

— Learns general representations

* Same idea has been adopted for vision, but with much higher
masking ratio (~¥80% of patches masked)

ViT: Vision Transformers (Dosovitskiy et al. 2021)

Trdnafurmer Encoder

@ﬁ,

MLP

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

I
- 5

* Extra learnable
fclass] embedding [L1 near ij ection of F]attened Patchev.

Multi-Head
Attention

R
Norm

I

r LT 1_1|_|
' !
L3 | : i ll p
.

[Embedded
Patches

https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2010.11929

Why is ViT worth knowing about? @s«eciations)

1. Shows that the same exact Transformer blocks
can be used for vision, paving the way for
multimodal processing

2. Transformers work as well as CNNs but are more
computationally efficient

3. Vision and language are easier to combine using
transformers

ViT Overview

* |Image is divided into patches
(e.g., 16x16)

* Each patch projects into a fixed
length vector

e Positional encoding added to
each patch

* Extra [CLS] token to encode
Image summary

 Multiple layers of standard
transformer (same as for
language)

* For classification, final
prediction is linear layer
applied to [class] token

Vision Transformer (ViT)

MLP \
Head

Transformer Encoder

it - 69) 6)6) .ﬁ

* Extra learnable

[class] embedding [Lmear P]‘O_] ection of Flattened Patches
NE R | | L |
mﬁ@—-ilmﬁ i P
i s P

Transformer Encoder

Embedded
Patches

Different size models,

Same model, different

Big convolutional

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

same pretraining pretraining dataset networks
Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +-0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+003 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.42+003 99.15+0.03 09.37 +0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 03.51 +0.08 —
Oxford-1IIT Pets 97.56+0.03 97.32+011 94.67+0.15 06.62 +0.23 —
Oxford Flowers-102 99.68+0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) T7.63+023 76.28+046 7T2.72+021 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
$30K $120K
80 BN ViT-H/14 WSS BiT-L (R152x4) B VIVI-Ex-100% (RS0x3) BN S4L (R50x1)
S 88
=75
& 80 85 60
" 10N * 1Nl
: B
6 = 70 - 80 50 .

VTAB (19 tasks)

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

Natural (7 tasks)

Specialized (4 tasks)

Structured (8 tasks)

Table 1: Details of Vision Transformer model variants.

Information is integrated
among distant patches

RGB embedding filters
(first 28 principal components)

Position embedding similarity ViT-L/16
m . °
YTTTTT T
.E- -» .
AR Z100{ &t --!l|
g -E‘ i l ‘O'
€3 G & 80 $es® '-=.=
- = E .l‘ E'.'a
b £ =] L 1 H
a4 o 60- :-:!;!l-
25 = = o 3! * Head 1
g o o 4049, ¢ *°
£ o e * el * Head 2
6 o *e « Head3
c 204,4,
[- .
7 =
_'1 D T T T T T
0 5 10 15 20
Input patch column Network depth (layer]

Figure 7: Left: Filters of the initial linear embedding of RGB values of ViT-L/32. Center: Sim-
ilarity of position embeddings of ViT-L/32. Tiles show the cosine similarity between the position
embedding of the patch with the indicated row and column and the position embeddings of all other
patches. Right: Size of attended area by head and network depth. Each dot shows the mean attention
distance across images for one of 16 heads at one layer. See Appendix D.7 for details.

Visualizing transformer (Chefer et al. 2021)

Visualizations for overall and class-specific feature importance

Input
Input

CNNs vs. Transformers

CNNs encode position as an index in the feature map. Transformers do not care about index
order but encode positional embeddings

- Surprisingly, even when positional embeddings are not used, transformer models still work well

CNNs encode a bias that nearby pixels are most related. Transformers enable combining
information from distant patches, with positional embedding providing a weak prior to
consider nearby patches

— CNNs can only use information in neighboring pixels/cells, but the receptive field (pixel area
considered) grows larger as network gets deeper

In practice, CNNs and Transformers perform similarly for pure vision tasks, but Transformers
are faster to train

— Hybrids are possible, e.g. apply shallow CNN before first patch embedding

Transformers operate on “tokens”, which is very general and can be applied to any modality

Q2-4
https://tinyurl.com/AML441-L19

o

O et

https://tinyurl.com/AML441-L19
https://tinyurl.com/AML441-L19
https://tinyurl.com/AML441-L19

Unified-10: <text, image> to <text, image> (Lu et al. 2022)

3B parameters

Pre-train on masked

-
[,
I -

| VQVAE |

Encoderr—=s{

argmax; x> | £ — 2 | 3 [22]10

: (CHM) :

..-""-r.
-
-

quantization

™ 10 (80| 41
24 (15 &1
32 (1015 3

T

-

Decoder!

| (CNN)

- :
-
L) .‘|

==
:VCWAE:]

-

1Y
T

Image serialization using a VO-VAE

text and image
completion for text,
images, and
image/caption pairs

Multitask training
on 80 datasets

Unified-10 (June 2022)

https://unified-io.allenai.org/

Segment the cat }—r

T ——
SentPisce

encoaer

.
SentPiece

encode

L A
— ‘ L

Patch
embedding

discrete input
sequence

- 1
Discrete
]
sequence |
serves as |
i
the target |

® Unified-10

Transformer Transformer
Encoder Decoder

1 %

LY

] %
VOVAE “
decoder 1
is frozen |

https://unified-io.allenai.org/
https://unified-io.allenai.org/
https://unified-io.allenai.org/

What is the
complete image?
Segmentation color:
“white: knob, silver:
cupboard, olive:
drawer, lims _."

{14
NOILLOId3Hd

Vision tasks
e Image synthesis from text / Whatobyecsarrn

inpainting / segmentation - 0cB4T loc109% bicycl
e Image/object classification —d
e Object detection,

loc100 loc7 45 locd 95
loc?91 chair loc293
loc100 loc?53 loc7 63

{141
NOILIIO3Hd

segmentation, keypoint o
estimation e =)
e Depth/normal estimation Tanpiet *3
Vision-language tasks
e VQA, image/region
captioning, referring N |3
expressions rormal i h 2(3
comprehension, o 2
relationship detection
NLP tasks 1 -
e Question answering Tﬁff?}”mdmﬁg |3
e Text classification Testmentrotonlyincressec oygenovsisin W ppiomimation 5[S uppiomenaton
erases oxygen aptake ina petont? T -

Often performs similarly or better than SotA single-task models

k=
g
o Iy — § :y"'-“ ,;j: & T _
> 5 f 2 S z & 5 5 &8 9 8 & 9o 3
= £ Y < o ol = = S O 7 o o S ~
o~ 7 F o < J i = - Z] O O & S)
= £ & = S < = = s 5 5 = O O = & &
Split val val wval test-dev test test test-dev test-std test wval val val val test val val test
Metric RMSE Acc. Acc. Acc. Acc. Acc. Acc. [oU Acc. Acc. CIDEr CIDEr CIDEr CIDEr Fl Acc Acc
Unified SOTA UViM - - - Flamingo - Flamingo - - - - - - - T5 PalLM -
0.467 - - - 57.8 - 49.8 - - - - - - - 92.20 92.2 -
UNIFIED-1O0zmars 0.649 42.8 38.2 570 31.0 24.3 42.4 35.5 17.3 76.5 - 45.1 80.1 - 84.9 63.9 87.4
UNIFIED-1O0zpze 0.469 63.3 432 618 37.8 28.5 45.8 50.0 29.7 856 - 66.9 104.0 - 87.9 710.8 90.3
UNIFIED-10 8502 0.402 71.8 505 678 42.7 33.4 47.7 4.7 40.4 86.1 - 87.2 117.5 - 87.5 713.1 93.1
UNIFIED-1O0y, 0.385 79.1 532 779 54.0 45.2 574 63.0 498 91.1 21.2 1000 1268 1223 89.2 19.7 05.7
Single or fine- BinsFormer CoCa MAE CoCa KAT GPV2 Flamingo MAC-Caps JSL OFA SVT CoCa - OFA Turning NLR ST-MOE DeBERTa
tuned SOTA 0.330 91.00 60.3 823 544 38.1 63.7 27.3 39.6 91.0 183 1224 - 145.3 93.8 92.4 97.7

32

Explore demo of Unified 10 2 which extends to audio and multiple
Image inputs

https://unified-io-2.allenai.org/

https://unified-io-2.allenai.org/
https://unified-io-2.allenai.org/
https://unified-io-2.allenai.org/
https://unified-io-2.allenai.org/
https://unified-io-2.allenai.org/

HW 5

1. Applications of Al [30 pts]

Choose an application area (e.g. Al for agriculture, advertising, recommendation systems,
self-driving cars/trucks, manufacturing, construction, home monitoring, virtual assistants), read
at least two related media articles or papers, cite your sources, and answer the following
questions:

1. How is Al used in that application area? What is the problem that Al is trying to solve,
and what are the key Al/ML technologies involved? What are the technical challenges?
(100+ words)

2. What is the actual or potential positive impact? Who is impacted? (50+ words)

3. What is the actual or potential negative impact? Who is impacted? (50+ words)

If you use media articles, they should be from highly respected sources, e.g. The Economist,
Wall Street Journal, NY Times, Washington Post, Atlantic, MIT Technology Review. This will be
graded as complete/incomplete. Any citation format is OK, as long as it clearly indicates the
source, article title, and date of article.

2. Fine-tune ImageNet Model for Pets Classification [30 pts]

A convolutional neural network (CMN) is a type of deep learning artificial neural network
commonly used for image processing tasks. In this section, you will load a pretrained network,
finetune it for a new task, and evaluate it to achieve a good image classification accuracy on the
Oxford-llIT Pet dataset. The fask is to classify the breed of cat or dog.

This code is worth understanding, but writing it all from scratch would be too much work for
those new to deep network learning. So we have provided most of the code structure. Read it
carefully and uncomment it as you go, where indicated. Your key steps are:

1. Load a pretrained ResNet34 and replace the last layer of the network so that the output
dimension matches the number of Pet classes. See Mar 26 lecture. Include the printout
of network structure and parameters in your report.

2. Setthe learning rate and learming scheduler, train, and evaluate. You may need to
modify the training settings to get a better performance. You can consider the data
augmentation, learning rate, learning rate scheduler, and batch size. Attach the accuracy
and loss plots for fraining_set and test_set, and report your best testing accuracy. You
should be able to reach an accuracy of at least 90% within 10 epochs.

3. Zero-shot and Linear Probe using CLIP [40 pts]

CLIP (Contrastive Language-Image Pre-Training), developed by Opendl, is a neural network
trained on 400 million (image, text) pairs. CLIP encodes text and images into the same vector
space, so that it can match images to text descriptions by encoding each and computing the dot
product of the encodings. This enables zero-shot classification, i.e. assigning images to text
labels from a dataset without training on that dataset. The following are some resources you
may find useful for understanding CLIP and finishing your tasks in this homework.

GitHub Repo (Make sure to look at this for examples of how to use CLIF)

Learning Transferable Visual Models From Natural Language Supervision (paper)
CLIF Website

Labels for Flowers 102 dataset (json file

The starter code includes sections for loading the Flowers 102 dataset, the CLIF model, and
examples of usage The code splits the data into a “train” and “test” (validation) set.

Your tasks are to use CLIP for a new classification task in three ways:

Zero-shot. Use pre-frained text and image representations to classify images. For zero-shot
recognition (no training), text features are computed from the CLIP model for phrases such as
“An image of <flower_name>, a type of flower” for varying <flower_name= inserts. Then, image
features are computed using the CLIP model for an image, and the cosine similarity between
each text and image is computed. The label corresponding to the most similar text is assigned
fo the image. We've included an example in the starter code. You'll get that working using a data
loader, which enables faster batch processing; then, compute the accuracy over the test set.
You should see top-1 accuracy (i.e. percent of times the highest confidence predicted label is
correct) in the 60-70% range.

Linear probe: Often, it is possible to improve performance for a particular classification task by
training a linear classifier on the model's features. This is called a “linear probe”. We can do
that by extracting the CLIP pre-frained image features and then training a linear logistic
regression classifier. We do not use text features for the linear probe method. Train on the train
set, and evaluate on the test set and report your performance. You can get top-1 accuracy in the
90-95% range. If you see accuracy in the 80's, fry both normalizing and not normalizing the
features.

Nearest neighbor: We can also extract pretrained CLIP features and apply a nearest neighbor
classifier. You can use your own implementation of nearest neighbor or a library like skleam or
FAISS for this. Try K={1, 3, 5, 7, 11, 21}. Report performance for best K on the test set. You
should see top-1 accuracy in the 80-90% range.

Things to remember

* Transformers are general data processors,
applicable to text, vision, audio, control, and
other domains

* Pre-training to generate missing tokens in P TN
unsupervised text data learns a general ol
model that can be fine-tuned SERT

- Same idea is also applicable to other domains
_ N S
* Transformer architectures are state-of-art for Pre.training

vision and language individually

e Arguably, the biggest benefit of transformers
is ability to combine information from
multiple domains

Next class: Foundation Models

e CLIP
e GPT line of work

	Transformers in Language and Vision
	Self-attention, in simple words
	Transformers: general data processors
	Positional encodings
	Remember from last class
	Q1
	Today’s Lecture
	Language Transformer: Complete Architecture
	Application to Translation
	Results
	BERT (Devlin et al. 2019)
	Why is BERT worth knowing?
	Overview of BERT
	BERT: Input representation
	“Encoder-only” and “Decoder-only” architectures
	Pre-training with masked language modeling (MLM)
	Pre-training with next sentence prediction
	Pre-training and fine-tuning
	BERT results
	Key Take-aways from BERT
	ViT: Vision Transformers (Dosovitskiy et al. 2021)
	Why is ViT worth knowing about?
	ViT Overview
	Slide Number 24
	Slide Number 25
	Visualizing transformer (Chefer et al. 2021)
	CNNs vs. Transformers
	Q2-4
	Unified-IO: <text, image> to <text, image> (Lu et al. 2022)
	Slide Number 30
	Often performs similarly or better than SotA single-task models
	Explore demo of Unified IO 2 which extends to audio and multiple image inputs
	HW 5
	Things to remember
	Next class: Foundation Models

