

Deep Learning Optimization and Computer Vision

Applied Machine Learning Derek Hoiem

Today's Lecture

Defining and training a deep network w/ PyTorch

- Adopting the network to new tasks
 - Fine-tuning
 - Linear probe

Mask RCNN recognition system

1. Define the network model

Convolutional network for Digits Classification

```
class Network(nn.Module):
    def __init__(self, num_classes=10, dropout = 0.5):
        super(Network, self). init_()
       self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 256, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
       self.classifier = nn.Sequential(
            nn.Dropout(p=dropout),
            nn.Linear(256 * 6 * 6, 512),
           nn.ReLU(inplace=True),
           nn.Dropout(p=dropout),
           nn.Linear(512, 512),
            nn.ReLU(inplace=True),
            nn.Linear(512, num classes),
    def forward(self, x):
       N, C, H, W = x.shape
       features = self.features(x)
       pooled features = self.avgpool(features)
       output = self.classifier(torch.flatten(pooled features, 1))
       return output
```

- 1. Define the network model
- 2. Set the key training parameters: # epochs, initial learning rate and schedule, optimizer, loss function, data loaders

```
# Set up the training
num_epochs = 20
test_interval = 1

# set initial learning rate and optimizer
learn_rate = 3E-4
optimizer = torch.optim.AdamW(model.parameters(), lr=learn_rate)

# define your learning rate scheduler, e.g. StepLR
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)

# set the loss
criterion = torch.nn.CrossEntropyLoss()
```

- 1. Define the network model
- 2. Set the key training parameters
- 3. Train and track performance

Top-level of training

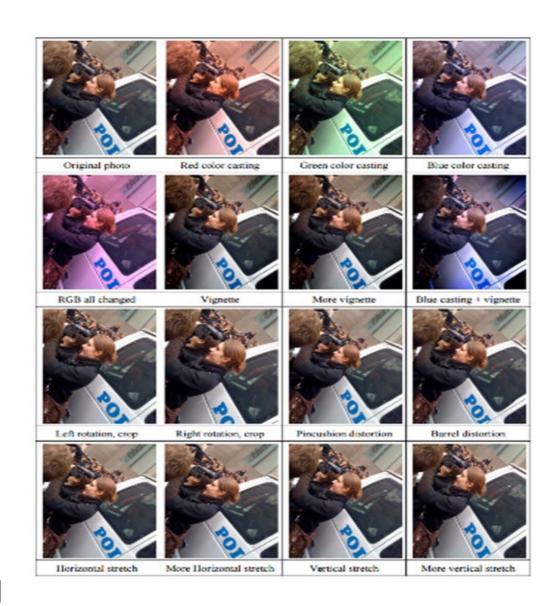
```
# Iterate over the DataLoader for training data
for epoch in tqdm(range(num_epochs), total=num_epochs, desc="Training ...", position=1):
    train loss = train(train loader, model, criterion, optimizer) # Train the Network for one epoch
   # TO DO: uncomment the line below. It should be called each epoch to apply the lr_scheduler
    lr scheduler.step()
   train_losses.append(train_loss)
    print(f'Loss for Training on epoch {str(epoch)} is {str(train loss)} \n')
   # Also compute validation loss/error every few epochs
   # Tools like TensorFlow and Weights&Biases make it easier to track and visualize experiments
```

- 1. Define the network model
- 2. Set the key training parameters
- 3. Train and track performance

```
def train(train_loader, model, criterion, optimizer):
    Train network
    :param train_loader: training dataloader
    :param model: model to be trained
    :param criterion: criterion used to calculate loss (should be CrossEntropyLoss
    :param optimizer: optimizer for model's params (Adams or SGD)
    :return: mean training loss
    model.train()
    loss = 0.0
    losses = []
    # train for one epoch
    it train = tqdm(enumerate(train loader), total=len(train loader), desc="Traihin
    for i, (images, labels) in it train:
        # get images, labels for this batch
        images, labels = images.to(device), labels.to(device)
        # clear the gradients
        optimizer.zero_grad()
        # generate output for each image in the batch
        prediction = model(images)
        # compute the loss for each example
        loss = criterion(prediction, labels)
        it train.set description(f'loss: {loss:.3f}') # update displayed statement
        # compute the gradients
        loss.backward()
        # update the weights
        optimizer.step()
        # keep track of the loss to monitor the process
        losses.append(loss)
    return torch.stack(losses).mean().item()
```

Training Trick: Data Augmentation

- Create virtual training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion
- Simulates a larger training set, often improves improve performance
- Idea goes back to Pomerleau 1995 at least (neural net for car driving)



Applying Data Augmentation

- 1. Define transformation sequence
- 2. Input transform specification to data loader

```
import torch
from torchvision import datasets, transforms
batch_size=200
train_loader = torch.utils.data.Dataloader(
    dataset.MNIST('../data', train=True, download=True,
                  transform=transforms.Compose([
                      transforms.RandomHorizontalFlip(),
                      transforms.RandomVerticalFlip(),
                      transforms.RandomRotation(15),
                      transforms.RandomRotation([90, 180, 270]),
                      transforms.Resize([32, 32]),
                      transforms.RandomCrop([28, 28]),
                      transforms.ToTensor()
    batch_size=batch_size, shuffle=True)
```

References:

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3 https://pytorch.org/vision/main/transforms.html

Training deep networks is a craft

- https://karpathy.github.io/2019/04/25/recipe/
 - Read this in entirety to get a better understanding of training deep learning models and what you need to learn more about

- https://myrtle.ai/learn/how-to-train-your-resnet/
 - Interesting deep dive into hyperparameter selection

https://tinyurl.com/441AML-L17

Adapting Networks to New Tasks

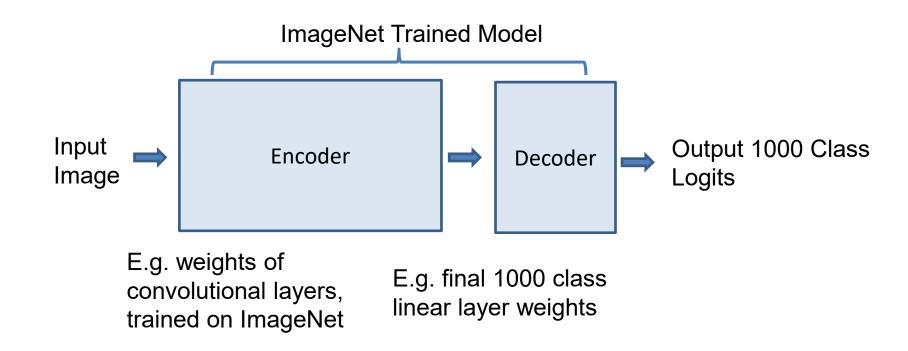
 Training a deep network from scratch requires a lot of data and a lot of compute

What if you don't have a lot of data or compute?

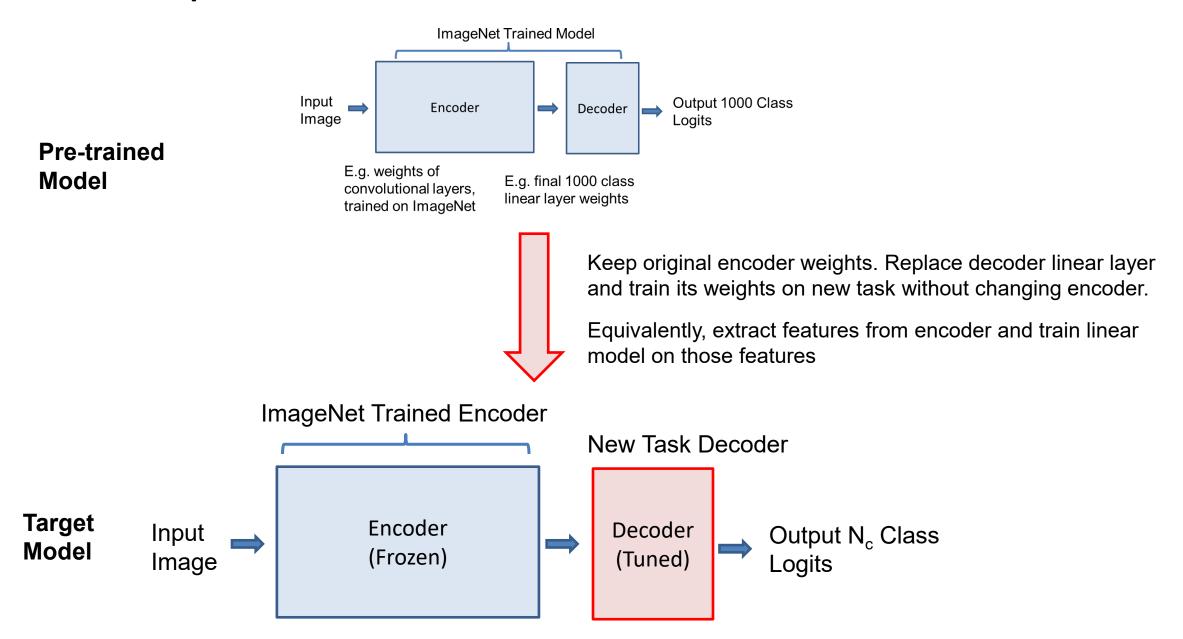
- Critical concept: We can start with a "pre-trained" network and adapt it to a new task
 - Linear probe
 - Fine-tuning

Adapting Networks to New Tasks

- Suppose we've trained ImageNet model
- But we want to do something else, e.g. classify flowers or dog breeds
- We don't have a huge dataset for that task



Linear probe, a.k.a. Feature extraction



How to apply linear probe

Pre-compute features method

- 1. Load pretrained model (many available)
 - https://pytorch.org/vision/stable/models.html
- 2. Remove prediction final layer
- 3. Apply model to each image to get features; save them with labels
- 4. Train new linear model (e.g. logistic regression or SVM) on the features

```
import torch
import torch.nn as nn
from torchvision import models

model = models.alexnet(pretrained=True)

# remove last fully-connected layer
new_classifier = nn.Sequential(*list(model.classifier.children())[:-1])
model.classifier = new_classifier
```

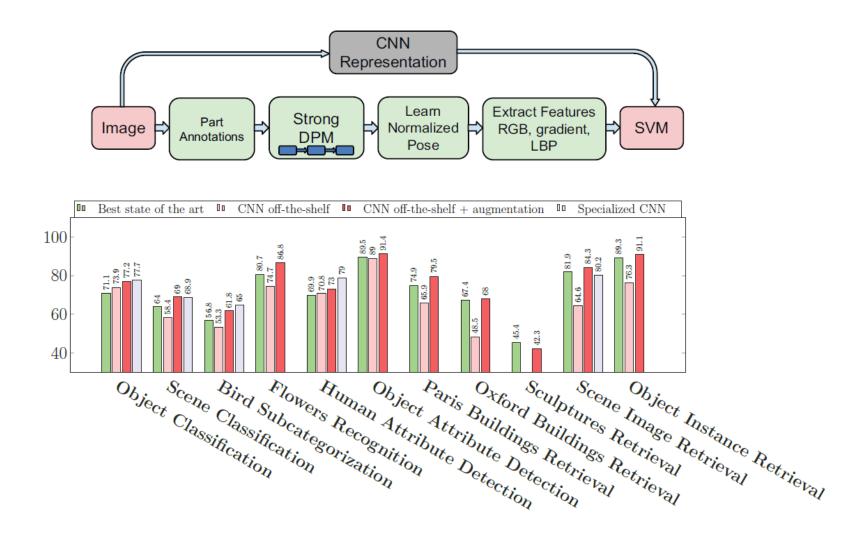
Freeze encoder method

- Load pretrained model (many available)
 https://pytorch.org/vision/stable/r
 - https://pytorch.org/vision/stable/models.html
- 2. Set network to not update weights
- Replace last layer
- Retrain network with new dataset
- Slower than method on left but does not require storing features, and can apply data augmentation

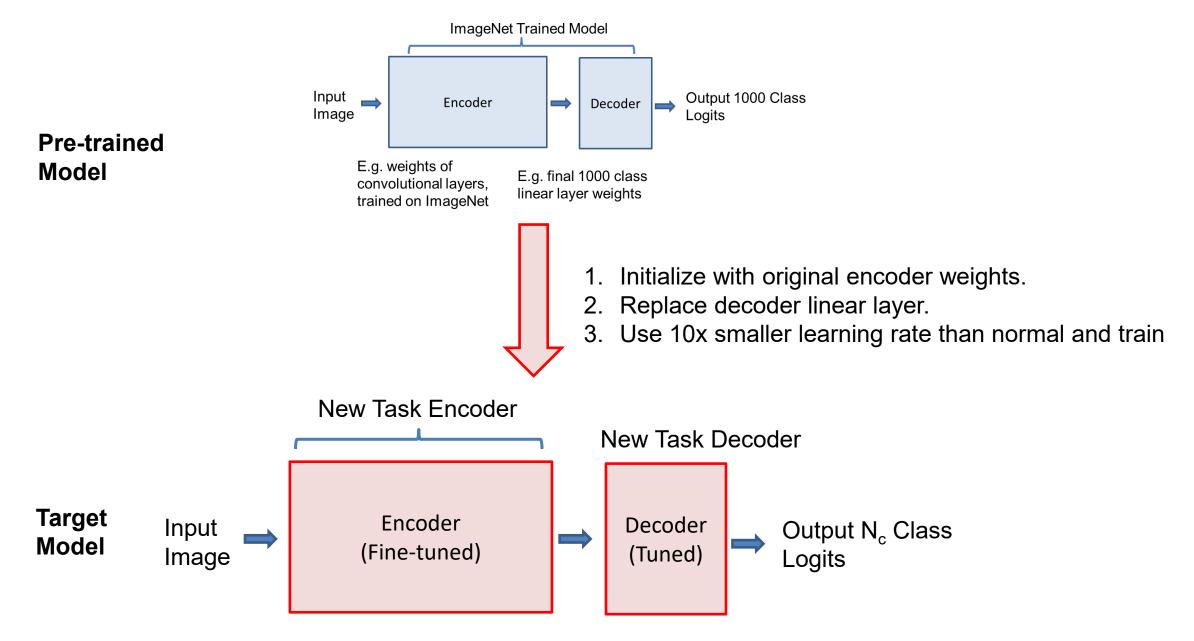
```
model = torchvision.models.vgg19(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
    # Replace the last fully-connected layer
    # Parameters of newly constructed modules have requires_grad=True by default
model.fc = nn.Linear(512, 8) # assuming that the fc7 layer has 512 neurons, other
model.cuda()
```

Source

Pre-trained networks can provide very good features, as shown in "CNN Features off-the-shelf: an Astounding Baseline for Recognition"



Fine-tuning



How to apply fine-tuning

- 1. Load pre-trained model
- 2. Replace last layer
- 3. Set a low learning rate (e.g. lr=e-4)
 - Very sensitive to learning rate because you want to improve but not drift too far from the initial model -- learning rate is the most critical parameter for fine-tuning!
 - Learning rate is often at least 10x lower than from "scratch" training
 - Can "warm start" by freezing earlier layers initially and then unfreezing after a few epochs when the linear layer is mostly trained (avoids messing up encoder while classifier is adjusting), or start learning rate near zero and increase slowly over several epochs
 - Can set lower learning rate for earlier layers

```
target_class = 37
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet34', pretrained=True)
model.fc = nn.Linear(512, target_class)
```

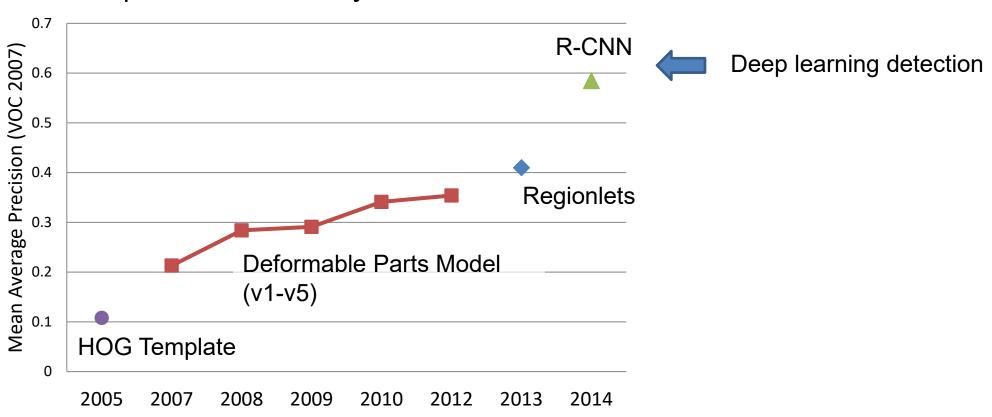
In this example, last layer has 512 input features and is called "fc"

Other examples of layer customization (from '23 TA Weijie)

https://tinyurl.com/441AML-L17

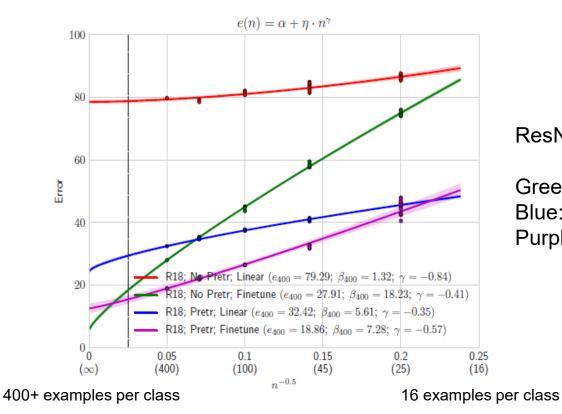
R-CNN first demonstrated major detection improvement by pretraining on ImageNet and fine-tuning on PASCAL VOC

Improvements in Object Detection



HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013 R-CNN: Girshick et al. 2014

Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?



ResNet18, Err vs # examples / class (in paren)

Green: Train from scratch

Blue: Linear Probe from ImageNet Purple: Fine-tune from ImageNet

Very little data

Use linear probe on pre-trained model

Moderate data

Fine-tune pre-trained model

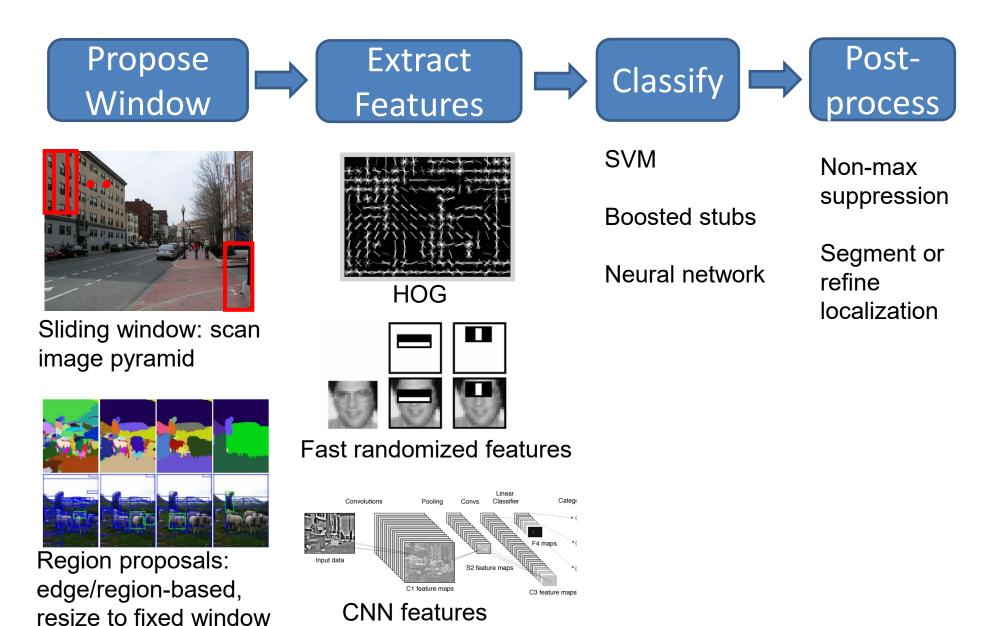
Very large dataset

Either fine-tune or train from scratch

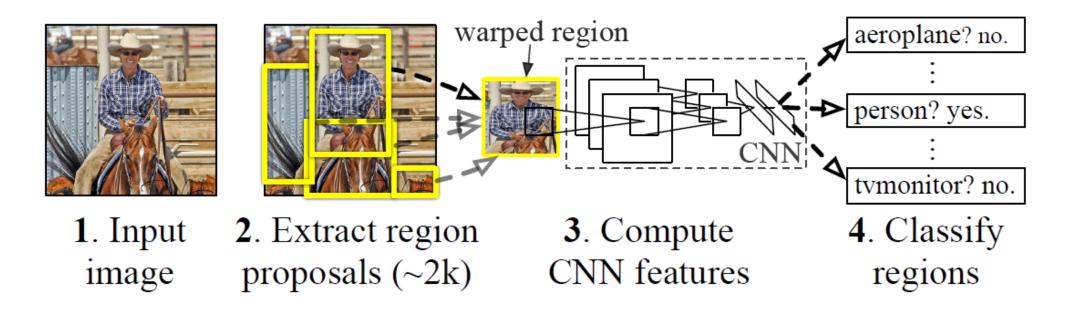
(a) Transfer: ImageNet to Cifar100

"Learning Curves" (2021) pdf

Statistical template approach to object detection



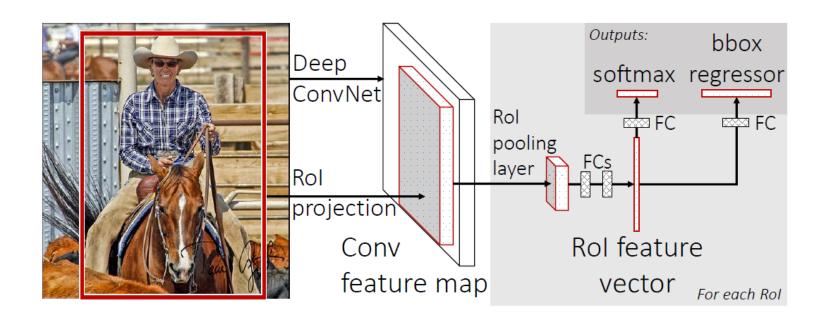
R-CNN (Girshick et al. CVPR 2014)



- Extract regions using Selective Search method (Uijilings et al. IJCV 2013)
- Extract rectangles around regions and resize to 227x227
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM

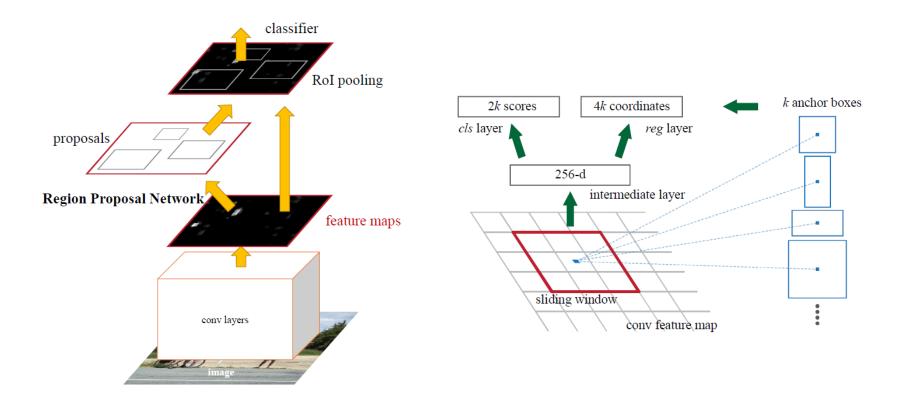
http://arxiv.org/pdf/1311.2524.pdf

Fast R-CNN – Girshick 2015



- Compute CNN features for image once
- ROI Pooling: Pool into 7x7 spatial bins for each region proposal, output class scores and regressed bboxes
- Other refinements: compress classification layer, use network for final classification, end-to-end training
- 100x speed up of R-CNN (0.02 0.1 FPS → 0.5-20 FPS) with similar accuracy

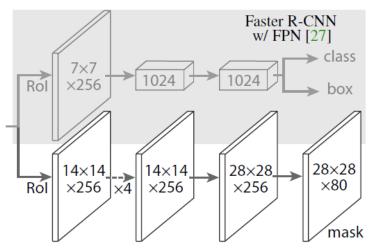
Faster R-CNN – Ren et al. 2016



- Convolutional features used for generating proposals and scoring
 - Generate proposals with "objectness" scores and refined bboxes for each of k "anchors"
 - Score proposals in same way as Fast R-CNN
- Similar accuracy to Fast R-CNN with 10x speedup

Mask R-CNN – He Gxioxari Dollar Girshick (2017)

- Same network as Faster R-CNN, except
 - Bilinearly interpolate when extracting
 7x7 cells of ROI features for better
 alignment of features to image
 - Instance segmentation: produce a
 28x28 mask for each object category
 - Keypoint prediction: produce a 56x56 mask for each keypoint (aim is to label single pixel as correct keypoint)



Example ROI and predicted mask

Example ROI and predicted mask and keypoints

Top performing object detector, keypoint segmenter, instance segmenter (at time of release and for a bit after)

	backbone	APbb	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP^bb_S	$\mathrm{AP}^{\mathrm{bb}}_{M}$	$\mathrm{AP}^{\mathrm{bb}}_{L}$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [37]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [36]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

Table 3. Object detection single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN usir

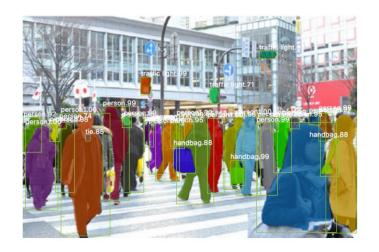
	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016

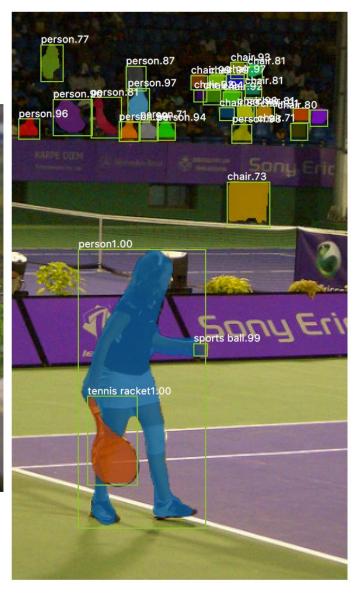
	AP^{kp}	AP_{50}^{kp}	AP^kp_{75}	AP^{kp}_M	AP^{kp}_L
CMU-Pose+++ [6]	61.8	84.9	67.5	57.1	68.2
G-RMI [31] [†]	62.4	84.0	68.5	59.1	68.1
Mask R-CNN, keypoint-only	62.7	87.0	68.4	57.4	71.1
Mask R-CNN, keypoint & mask	63.1	87.3	68.7	57.8	71.4

Table 4. **Keypoint detection** AP on COCO test-dev. Ours

Example detections and instance segmentations



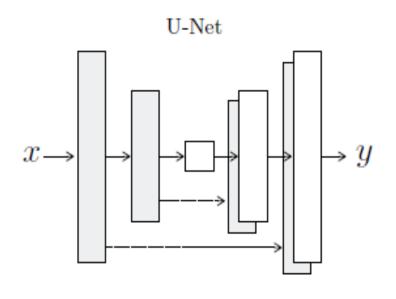
Example detections and instance segmentations



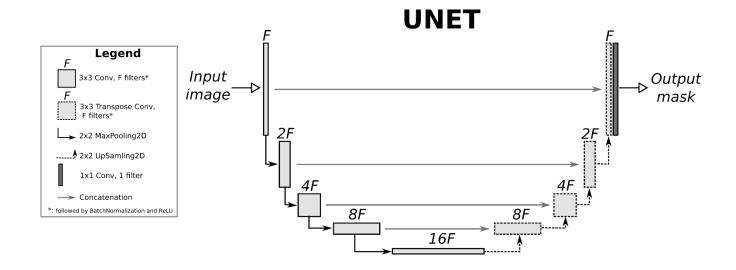
Example keypoint detections

U-Net Architecture

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015.



The "U-Net" is an encoder-decoder with skip connections between mirrored layers in the encoder and decoder stacks.

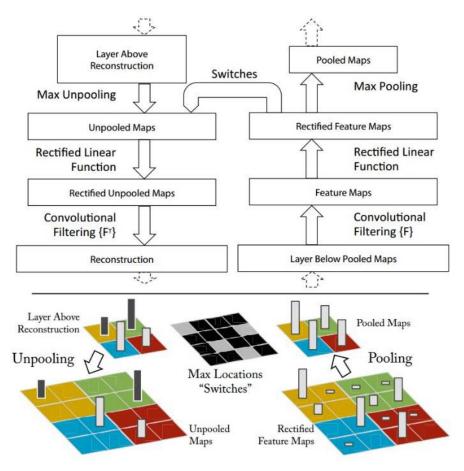


U-Net style architectures are used to generate pixel maps (e.g., RGB images or per-pixel labels)

What does the CNN learn?

Map activation back to the input pixel space

 What input pattern originally caused a given activation in the feature maps?



Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

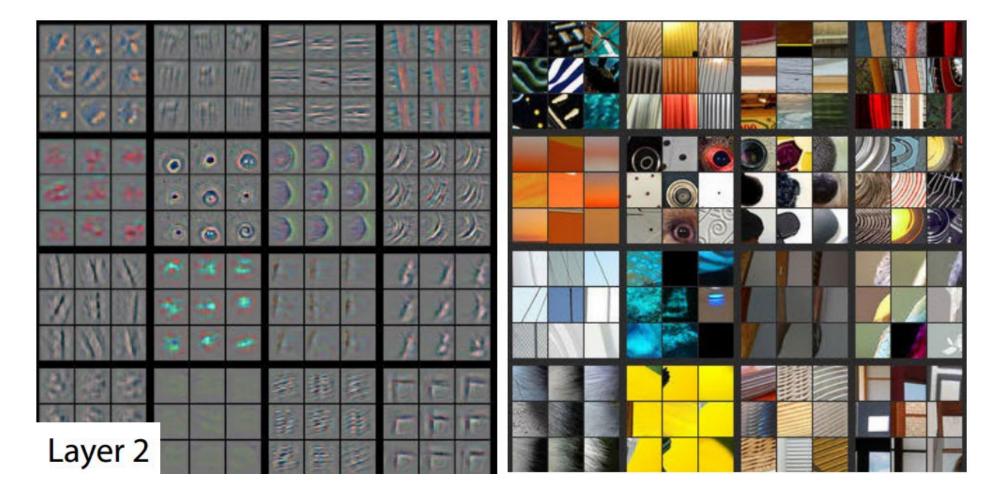
Layer 1 (visualization of randomly sampled features)

Activations (which pixels caused the feature to have a high magnitude)

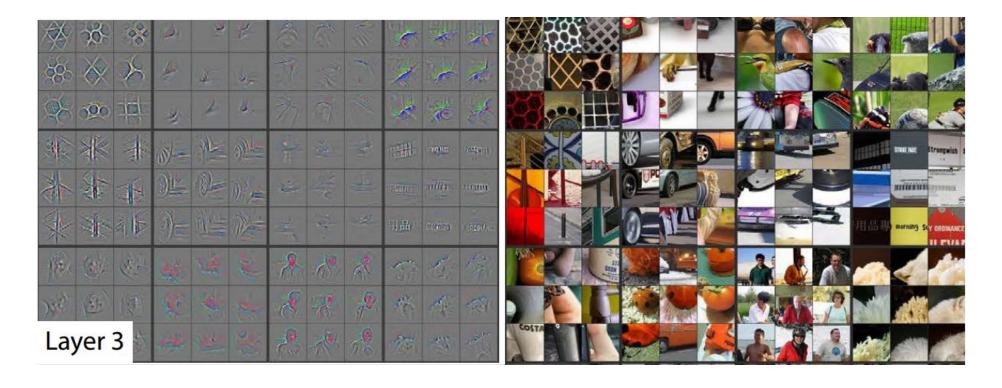
Image patches that had high activations

Layer 1

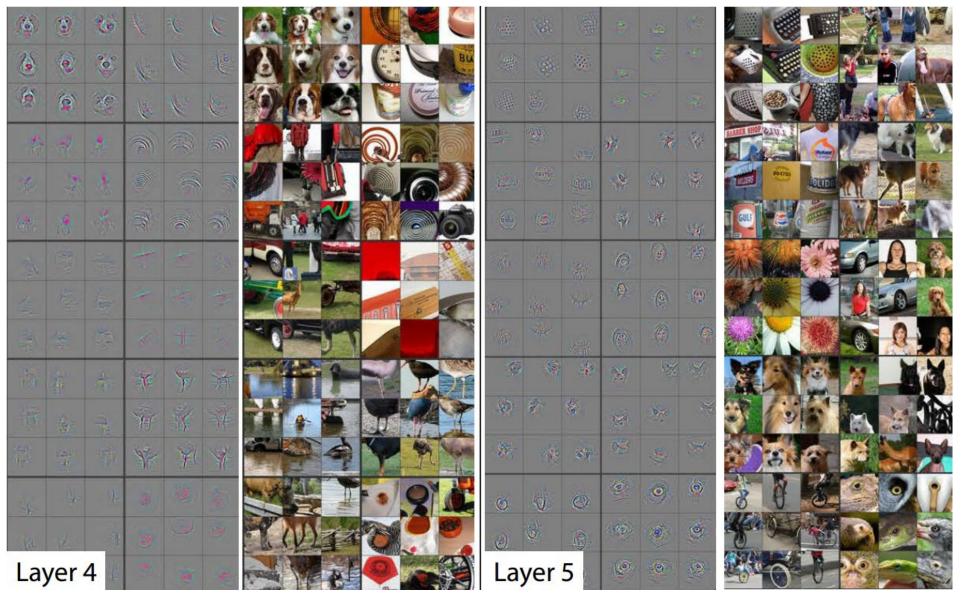
Layer 2



Layer 3



Layer 4 and 5



Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Things to remember

 Models trained on ImageNet are used as pretrained "backbones" for other vision tasks

 Mask-RCNN samples patches in feature maps and predicts boxes, object region, and keypoints

 Many image generation and segmentation methods are based on U-Net: downsamples while deepening features, then upsamples with skip connections

