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Today’s Lecture

* A bit of deep learning history

* Early advances in deep networks
— Convolutional networks
— Residual connections
— BatchNorm

e Enhancements to SGD



Brief history of deep learning

e 1958: neural nets (perceptron and MLP) invented by Rosenblatt
 1967: First use of SGD in deep-learning network (Amari)

e 1980’s/1990’s: Neural nets are popularized and then abandoned as being
interesting idea but too difficult to optimize or “unprincipled”, supplanted by
SVM

deep learning

e 1990’s: LeCun and colleagues achieve state-of-art performance on character
recognition with convolutional network

machine learning "

e 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff with
deep networks but without much traction/acclaim in most areas

e 2010-2011: Substantial progress in some areas, but vision community still
unconvinced

e 2012:shock at ECCV 2012 with ImageNet challenge

neural networks "
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The Perceptron, the first neural network

Input

Weights

X2

Output: sgn(w-x + b)
X3 >
Xp

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386—408.



NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls .
- The Navy said the perceptron
would be the. first non-living
mechanism ‘“capable of receiv-
ing, recognizing and identifying

its surroundings without -any
human training or control.” |

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to’
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

line and which would be con-
scious of their existence. ‘

Slide: Lazebnik

1958 New York
Times...

In today’s demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O" for the right

squares. v
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.




A key problem: how to model the compositional nature of
text and images?
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mages have local patterns that can appear at different
nositions
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Linear filtering is a foundation of image processing
- Smoothing Filter

* Linear image filtering: at each pixel, output a
weighted sum of pixels in surrounding patch

— E.g. Gaussian-weighted smoothing filter (right), edge
detection (below), local pattern detection
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Animation: https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/
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A CNN (convolutional network) learns filter weights to
create grids of features (“feature map”)

feature map
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image Convolutional layer
Slide: Lazebnik



Convolution as feature extraction

Feature Map

Slide: Lazebnik



Multiple filters are learned, producing a map of

feature vectors

learned
weights

\
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feature map
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image

Convolutional layer
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Following layers operate on the feature map from
the previous layer

next layer
image Convolutional layer

Slide: Lazebnik



Key operations in a CNN

i

[ Feature maps 1

i

[ Spatial pooling }

i

[ Input Image ]

Feature Map

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key operations

i

[ Feature maps }

i

Rectified Linear Unit (ReLU)

[ Spatial pooling 1

Convolution
(Learned)

3

Input Image ' S »

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key operations

i

Feature maps

Spatial pooling

)
—

Max

[

Input Image ]

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key idea: learn features and classifier that work
well together (“end-to-end training”)

Label

»E’H%

Convolution/pool

Convolution/pool
Convolution/pool
Convolution/pool

Convolution/pool
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LeNet-5 for character/digit recognition

C3: f. maps 16@10x10

INPUT C1: feature maps S54:1. maps 16@5x5
6@28x28
S2: f. maps

32x32

l Full C{)n[lpem'[{]n | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection MNIST
: results
* Average pooling Error Rate (%) (~1% test
e Sigmoid or tanh nonlinearity . error)
* Fully connected layers at the end
 Trained on MNIST digit dataset with 60K training examples = Test
0w e Training

o 4 E 1z 1E 24

Training set Iterations

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.
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CNN: Convolutional Neural Network

* Architecture explicitly desighed to model compositional
patterns with translational invariance

 Combines convolutional layers with MLPs

* Can have 1D CNNs for text or signals, or 3D CNNs for
volumetric data
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For the next 10+ years, neural networks did not gain traction,
and they were dismissed as an interesting idea that just didn’t

work
* 2009 — Raina et al. train CNN with GPU
2011 — Glorot et al. found that using ReLUs improved training

* 2012...



Fast forward to the arrival of big visual data...

Created in 2006
 ~14 million labeled images, 20k classes
* Images gathered from Internet

e Human labels via Amazon MTurk

* ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik
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Surprise in the 2012 ImageNet
competition at ECCV
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Surprise in the 2012 ImageNet
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AlexNet: ILSVRC 2012 winner
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e Similar framework to LeNet but:
* Max pooling, ReLU nonlinearity
* More data and bigger model (7 hidden layers, 650K units, 60M params)
 GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
* Dropout regularization

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012



http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

What enabled the
breakthrough?

1. RelU activation enabled
large models to be
optimized

2. ImageNet provided diverse
and massive annotation to
take advantage of the
models

3. GPU processing made the
optimization practicable




Sigmoid vs RelLU

Sigmoid has derivative
less than 1 Derivative of Sigmoid and RelLU

=
o
1

everywhere

d/dx sigmoid(x)
d/dx ReLU(x)

Long products of
gradients will have
vanishingly small
values

o ©
o (e
1 1

o
N
T

Derivative value

ReLU have gradient of
1 for positive values,
so a long product can

o
N

o
o
1

potentially have a x
gradient of 1



Even with RelU, it was hard to get very deep networks to
work well

GoogleNet: add bottlenecks and multiple stages of
supervision f
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Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015



https://arxiv.org/abs/1409.4842

What was the problem?

 Were deeper networks
L . 5
overfitting the training data- < 56-layer
S 20-layer
* Or was the problem just that % ol 4
we couldn’t optimize them? 7
 How could we answer this 0

0 1 2

. 3 4
guestion? iter. (1e4)



Look at the training error!

%]
=

= -
— X
- 5 20-layer
QD 10F g 10+ y
o0
= 56-layer =2
- v
= Q
E S
= 20-layer
% ! 2 5 6 % 1 2 5 6
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With deeper networks, the training error goes up!?!

Fig: He et al. 2016



https://arxiv.org/abs/1512.03385

Very deep networks, vanishing gradients,
and information propagation

* Early weights have a long path to reach output
* Any zeros along that path kill the gradient
e Early layers cannot be optimized

* Multiple stages of supervision can help, but it’s
complicated and time-consuming

Vanishing gradients =
|
o]

s

Information propagation

 Networks need to continually maintain and add
to information represented in previous layers
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ResNet: the residual module

* Use skip or shortcut
connections around 2-3
layer MLPs or CNNs

weight layer
e Gradients can flow P : l revlu
quickly back through skip (x) . X
connections Welant ayer identity

 Each module needs only F(x) +x
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 290K citations



http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

Used in 50+ layer networks

I 256-d

!

1x1, 64
l relu

3x3, 64
l relu

1x1, 256

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K

operations

Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x64x1x1~16K

64 x 64 x 3 x 3~ 36K

64 x 256 x1x1~ 16K

Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Slide: Lazebnik
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ResNet: going real deep

Revolution of Depth

A

AlexNet, 8 layers VGG, 19 layers . ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) == (ILSVRC 2015)

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016
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Example COde: RESBIOCk ‘channels” = # feature maps

kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map

class ResBlock(nn.Module) :

def

def

~_init (self, in channels, out channels, downsample) :
super (). init ()
if downsample:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)
self.shortcut = nn.Sequential (
nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
nn.BatchNorm2d (out channels) - @
) . . . .
elee: If downsampling, do it here too so dimensions match
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
self.shortcut = nn.Sequential ()
self.convZ = nn.Conv2d(out channels, out channels, kernel size=3, stride=1l, padding=1)
self.bnl = nn.BatchNorm2d(out channels)
self.bn2 = nn.BatchNorm2d (out channels)
forward(self, input):

output = nn.RelLU() (self.bnl (self.convl (input)))
output = nn.RelLU() (self.bn2(self.conv2 (output)))
shortcut = self.shortcut (input)

output = output + shortcut+__________________*____*__‘

return nn.ReLU() (output) This “+ shortcut” is the skip connection



Example code: ResNet-18 architecture for ImageNet

class Network (nn.Module) :

def  init (self, num classes=1000): def forward(self, input):

super (). init () input = self.layerO (input)

resblock = ResBlock | input = self.layerl (input)

self.layer0 = nn.Sequential ( ) B )
nn.Conv2d (3, 64, kernel size=7, stride=2, padding=3), lnput = self. layerz (lnput)
nn.MaxPool2d (kernel size=3, stride=2, padding=1), input = self. layer3 (alUt)
nn.BatchNorm2d (64), input = self.layer4d (input)
nn.ReLU () input = self.gap (input)

) . _ .

self.layerl - nn.Sequential ( input = torch.flatten (input, 1)

64, downsample=False), lnput = self.fc (lnput)

resblock (64,
resblock (64, 64, downsample=False)

) _ return input
self.layer2 = nn.Sequential (

resblock (64,
(

4, 128, downsample=True),
128, 128, downsample=False)

resblock

)

self.layer3 nn.Sequential (

resblock (126, 256, downsamplo—True) Forward applies prediction, going through each layer
resblock (256, 256, downsample=False)
) Backward applies backpropagation to compute the loss

self.layer4 nn.Sequential (

56, 512, downsample=True), gradient with respect to parameters in each layer
12

resblock (2
(512, 512, downsample=False)

resblock

)
self.gap = torch.nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes) Pretrained TorCh mOdels



https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md

Batch Normalization

* As early layers adjust, the features

fed into later layers keeps changing

— This destabilizes training

e BatchNorm unit-normalizes
features of each mini-batch and
rescales/shifts with learned
parametersy, [

* Using BatchNorm often improves
stability and speed of training

Input: Values of  over a mini-batch: B = {x1._,,, }:
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}

~ T; — B |
T; ¢ —— 'f // normalize
«.HUBZ + €

Yi — "‘f&?{ + 8 = BN?.;‘? (1'-:&}

// mini-batch mean

// mini-batch variance

/! scale and shift

With BN reaches higher

accuracy faster lines shown) of activations are more stable

1

With BN, the mean (center line) and variance (15%/85t pctl

i e 2 e
09|
i "l — — = Without BN . Y
| —— With BN w
O7I0K 20K 30K 40K 50K ~2 -2
(a) (b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [loffe and Szegedy 2015]
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ResNet Architectures and Results

Network design is starting to become formulaic

layer name | output size 1 8-layer 34-layer S0-layer 101-layer 152-layer
comv | 112112 7=7, 64, stride 2
33 max pool, stride 2
. _ [ 1x1,64 [ 1x1,64 ] [ 1x1,64 ]
.-2_ 5 5 ; 1 *
comvZx | 3636 [ g“g'zi ]xz [ ':":""i }«3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
e S | 1x1,256 | | 1x1,256 | | 1x1,256 |
- : - . [ 1x1, 128 ] [ 1x1, 128 ] [ 1x1, 128 ]
3%3, 12 3,12 -
comvi_x 28 %28 fxf :q: x2 ;K; :ﬁg w4 3x3, 128 | x4 3x=3, 128 | =4 3x3, 128 | =8
L 2% 02 L =% 028 ] | 1x1,512 | | 1x1,512 | | 1x1,512 |
- - - ; [ 1x1,256 ] [ 1x1,256 ] [ 11,256 ]
3x3,2 3,25 . . . T . .
covdx | 14x14 fif’,,gz x2 i:x 352 %6 || 3x3,256 |x6 || 3x3,256 |x23 || 3x3,256 |x36
S SR | 1x1,1024 [1,<1__103-4_ [Iml.lDZ;l_
- - i [ 1x1,512 ] [ 1x1,512 ] [ 1%1,512
3%3,512 3,512 . -
comw5x | TxT jijﬁ}q x2 ;:x ::,, x3 |1 3x3,512 [x3 | | 3x3,512 |3 3x3,512 | x3
- T L oot | 1x1,2048 | [1><|__2043J ut,zmsJ
=1 average pool, 1000-d fc, softmax
FLOPs 1.8 107 3.6x10° 3.8x10° 7.6x10° 113107

First case where bigger keeps getting better

method top-1 err. top-3 err.
VGG [41] (ILSVRC' 14) - 8.431
GoogLeNet [44] (ILSVRC'14) - 7.89
VGG [41] (v5) 244 7.1
PReL.U-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except " reported on the test set).
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Improvements to SGD

Great site by Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c¢

Gradient of loss wrt weights

Basic SGD: —
Awe = —ng(w)
Wep1 = W + Awy
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SGD + Momentum

SGD + Momentum:

me=p-me+gwy) egfp=.9
Awy = —1n - my

Wep1 = W + Awy

Momentum (magenta)
converges faster and carries
the ball through a local
minimum

Figure source


https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

AdaGrad: Adaptive Gradient

AdaGrad:
Isq (t) = YIsq (t—1)+ g(Wt)Z

Aw, = —ng(wi)/./gsq(t) (normalize each weight’s update by path length of all previous updates)

Wep1 = W + Awy

m Stap-by-Step

Gradient Arrows
" Adjusted Gradient Arrows
Momentum Arrows
" | Sum of Gradient Squared
Path

Gradient Descent

Learning Rate: 1e -2

AdaGrad (white) avoids
moving in only one weight
direction, and can lead to
smoother convergence

Can be seen as setting a per-
weight learning rate

Figure source
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RMSProp: Root Mean Squared Propagation

RMSProp:
Jsq(t) = €-gsqt —1) + (1 —¢) - g(wg)? (introducing decay rate turns this into moving avg)

Aw, = —ng(w;)/./gsq(t) (normalize by moving average length of previous updates)

Wep1 = W + Awy

|| Momentum Armows

|| Sum of Gradient Squared
[ | Path

' Gradient Descent

Learning Rate:. 1e

| Momentum
Learning Rata: e 2 RMSPrOp (green) mOVGS

Decay rate: ' - faster than AdaGrad (Whlte)

M Adagrad

_ Learning Rate: e :—2 flv
Learning Rate: 1 -3 I~

Decayrate: 0990 |

Figure source


https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adam: Adaptive Moment Estimation

Adam:
m;=8 -m;+ (1 —p) gws) [momentum, 8 = 0.9]
gsqt) =€-gsqt—1) + (1 —€)- g(w)* [RMSProp, € = 0.999]

Awy = —n 'mt/\/ YIsq (we)

Wep1 = W + Awy

AdamW is a fix on Adam to correctly update weight decay

Videos

AdamW is widely used and easier to
tune than SGD + momentum

Figure source
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What to use?

« AdamW is less sensitive to hyperparameters (easier to get a
decent solution working)

* Some computer vision practitioners say SGD+momentum can
achieve the best performance, if you’re able to optimize over
hyperparameters

* Both are commonly used in research papers, with a slight edge
to AdamW
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What to remember magenet

* Deep networks provide huge gains in
performance -
— Large capacity, optimizable models
— Learn from new large datasets x

weight layer

]—"(x) ) relu

weight layer

* RelLU and skip connections simplify Fox) 4 x
optimization

Y

X
identity

e SGD+momentum and AdamW are the
most commonly used optimizers




Next lecture

* Defining and training a deep network w/ PyTorch

* Adopting the network to new tasks

— Linear probe

— Fine-tuning

 Mask RCNN recognition system
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