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Recap of approaches we’ve seen so far

* Nearest neighbor is widely used
— Super-powers: can instantly learn new classes and predict from one or many examples

* Logistic Regression is widely used
— Super-powers: Effective prediction from high-dimensional features

* Linear Regression is widely used

— Super-powers: Can extrapolate, explain relationships, and predict continuous values
from many variables

* Almost all algorithms involve nearest neighbor, logistic regression, or linear
regression
— The main learning challenge is typically feature learning



Today’s Lecture

* Introduce probabilistic models

* Naive Bayes Classifier
— Assumptions / model
— How to estimate from data
— How to predict given new features
— Cases of discrete and continuous variables

* “Semi-naive Bayes” object detector



What is a probability

* A belief, a confidence, a likelihood

e “There’s a 60% chance it will rain tomorrow.”

— Based on the information | have, if we were to simulate the future 100 times, I'd
expect it to rain 60 of them.

— | think it’s a little more likely to rain than not

* You have a 1/18 chance of rolling a 3 with two dice.
— If you roll an infinite number of pairs of dice, 1 out of 18 of them will sum to 3.

* Probabilities are expectations, according to some information and
assumptions.

— E.g., it will either rain tomorrow or not



Joint and conditional probability

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

P(a,b,c) = P(alb,c)P(b|c)P(c)

Plx,y) _P(ylx)P(x)
P(y) P(y)

Bayes Rule: P(x|y) =



Law of total probability

>
~~
=2
|
S
—/
|
p—

Marginalization Z P(x =v,y)| =P(y)

For continuous variables, replace sum over possible values with integral over domain



Estimate probabilities of discrete variables by counting

1
P(x =v) = WE O(x, = v)



Example

Rained
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Example

Rained

P(rains) = 3/8
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Example, converting counts to probabilities

x: Larger than 10 Ibs?

T P(y = Cat) =
Y cat |15 25
Dog |5 40 P(y = Cat|x = F) =

P(x = F|ly = Cat) =



Example

x: Larger than 10 Ibs?

F T P(y = Cat) =40 /85
Y Cat |15 25
Dog |5 40 P(y = Cat|x = F) = 15/20

P(x = F|y = Cat) = 15/40



A is independent of B if (and only if)

P(A,B) = P(A)P(B)

P(A|B) = P(4), P(B|A) = P(B)



What if you have 100 variables? How can you count all
combinations?

Fully modeling dependencies between many variables (more
than 3 or 4) is challenging and requires a lot of data



Probabilistic model

y* = argmax P(y|x)
y

Or equivalently...

y* = argmax P(x|y)P(y)
y

argmax P(y|x) = argmax P(y|x)P(x) = argmax P(y,x) = argmaxP (x|y)P(y)
y y y y



Notation

* Xx;is the ith feature variable
— I indicates the feature index

* x, is the nth feature vector
— n indicates the sample index

* y_ is the nth label
* x,; is the ith feature of the nth sample
* 0(x,; = v)returns 1if x,;; = v; 0 otherwise

— v indicates a feature value
— J is an indicator function, mapping from true/false to 1/0



https://www.kaggle.com/datasets/uciml/sms-spam-
collection-dataset

Suppose you want to classify whether a text message is spam

ham
Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got a...

ham
Ok lar... Joking wif u oni...

spam
Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entr...

ham
U dun say so early hor... U c already then say...

ham
Nah | don't think he goes to usf, he lives around here though

spam
FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it s...



https://www.kaggle.com/datasets/uciml/sms-spam-
collection-dataset

Suppose you want to classify whether a text message is spam or
not

P(“Ok lar... Joking wif u oni...”) probably is O in the training set
because you might not get exactly the same message twice

How to model?



Naive Bayes Model

Assume features x,.. x,, are independent given the label y:

Pixly) = | | Pely)

Then

y* = argmax | | PGuly)P)
Y i

= argmax| log P(y) + Z logP (x;|y) ]
y i



https://www.kaggle.com/datasets/uciml/sms-spam-

Naive Bayes Classifier collection-dataset

1. Estimate P(y = spam) and P(y = ham)
2. Estimate P(word = j | spam) and P(word = j | ham)

P(“Ok lar ... Joking wif uoni...”, spam)
= P(spam)P(“Ok” | spam)P(“lar”|spam) ... P(“oni”|spam)

P(“Ok lar ... Joking wif u oni ...”, ham)
= P(ham)P(“Ok” | ham)P(“lar”|ham) ... P(“oni”|ham)

If P(message, spam) > P(message, ham), it’s more likely spam.



Naive Bayes Algorithm

* Training
1. Estimate parameters for P(x,|y) for each i
2. Estimate parameters for P(y)
* Prediction
1. Solve for y that maximizes P(x,y) ¥V = arg;naxn P(x;|y)P(y)



Naive Bayes Algorithm

* Training
1. Estimate parameters for P(x;|y) for
each i

2. Estimate parameters for P(y)
* Prediction
1. Solve for y that maximizes P(x, y) y* = argmax 1_[ P(xily)P(y)
Yy :
l

But generally, P(x, y) will get vanishingly

small if x contains many features, so *_ Z ,
instead compute log P(x, y) Y arg}r/nax[ log P(y) + _ logP (xily) |
l

For spam detection, the spam score is
log P(x,y = spam) — log P(x,y = ham)



How to estimate P(x;|y) from data?

1. MLE (maximum likelihood estimation): Choose the parameter that
maximizes the likelihood of the data

2. MAP (maximum a priori): Choose the parameter that maximizes the
data likelihood and its own prior



MLE (maximum likelihood estimation)

* MLE: Choose the parameter that maximizes the likelihood of
the data

e Bernoulli (x is binary; y is discrete)
P(xily = k) = 6/ (1 — Oy;) ™

ZS SA k)/Zg

theta ki[k,i] = np.sum((X[:,i]==1) & (y==k)) / np.sum(y==k)

e Categorical (x IS has multlple discrete values, y is discrete)

O Z S a2V Yok ) /216 (k)

theta kiv[k,1i, v] = np.sum((X[:,1]l==v) & (y==k)) / (np.sum(y==k))



Priors and MAP (maximum a priori)

* MAP: Choose the parameter that maximizes the data likelihood
and its own prior

* Priors on the likelihood parameters prevent a single feature
from having zero or extremely low likelihood due to insufficient

training data

* As Warren Buffet says, it’s not just about maximizing expected return —it’s
about making sure there are no zeros.

e Discrete: initialize counts with a (e.g. « = 1)
a + count(x; =v,y =k)

Y,la + count(x; = v,y = k)]

P(x,=v|ly=k) =

theta kiv[k,1,v] = (np.sum((X[:,1]==v) & (y==k))+alpha) / (np.sum(y==k)+alpha*num v)



MLE and MAP estimates of binary variable likelihoods

 MLE (maximize data likelihood)
dnb(xn =1y, =1)
Zn5(xn =0,y, = 1) +Zn5(xn =1y, = 1)

Px=1ly=1) =

e MAP (maximum a posteriori) with prior a
a+2n6(, =1y, =1)

P = ) 5,560 = 0 = D) T @ + 2,8 = Ly = 1)

 This is a Bayesian prior that implies P(x = 0|y) = P(x = 1]y), unless data tells us differently
e Similar concept to regularization that we saw in linear regression and classification

* Important because it avoids zeros that could dominate the overall likelihood and provides a
more stable estimate with limited data

 With more data, the prior has less effect



Q1-Q3
https://tinyurl.com/AML441-L8r
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What if x is continuous? Can we still use Naive Bayes?

* E.g., estimate whether a person is male or female based on
height and weight

T Pim=1,hw)

Pim = 1lhw) = P(h,w)
Pim=1,hw)=P(m=1)P(him =1)P(wlm = 1)
Pim=0,hw)=P(m=0)P(hlm=0)Pw|m = 0)

P(h,w)=P(m=1,hw)+P(m=0,h,w)




Suppose x; is Gaussian, and y is discrete

(P,u,cr’ (X)

A= 2 S {4k § /26 (ya=k)
O = Z}{(Xni Aq) -9y )/ 2% (yazk)

mulk,i] = np.mean(X[y==k,1], axis=0)
sigmalk, 1] = np.std(X[y==k,1], axis=0)



Prior for Gaussian distributions

* Add some € to the variance (e.g. ¢ = 0.1/N)

— For multivariate, add to diagonal of covariance

sigmalk, 1] = np.std(X[y==k,1i], axis=0) + np.sqgrt(0.1/len (X))



Suppose we want to predict weight w given height h and sex m?

P(w,h,m) = P(h|lw)P(m|w)P(w) according to naive Bayes assumption

Can use a mix of 1D and 2D Gaussians and categorical distribution:

P(hlw) = P(h,w)/P(w) can be modeled with a 2D Gaussian and a 1D
Gaussian

P(m = 1|lw) = P(wim =1)P(m = 1)/P(w), which can each be
modeled with 1D Gaussian or categorical

P(w) can be modeled with 1D Gaussian (same as used in first two bullets)

w = argmaxy,P(w, h, m) can be solved by 0 = %P(W, h, m), which will
have a closed form solution in this case



How to predict y from x when (y — x;) is Gaussian

1"\ \j \S (bﬁ')"’\.q\)o"s ,

General formulation (set partial derivative wrt

2 .
‘S" Z”a& p()(.ly)”@i?(y) O T ,oflogP(x,y) to 0)
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Q4-Q6
https://tinyurl.com/AML441-L8r
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Use case: “Semi-naive Bayes” object detection

A Statistical Method for 3D Object Detection Applied to Faces and Cars

Henry Schneiderman and Takeo Kanade

* Best performing
face/car detector in
2000-2005

 Model probabilities of
small groups of features
(wavelet coefficients)

* Search for groupings,

discretize features, o
. l_l l_l Pu(patterny(x, v), x. _1"0bject)
estimate padra meters X,y € regionf = | >

17
I1 | [T Piwarterny(x, v, x, ¥|non-object)

X,V € reglonj — |

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPRO0O.pdf



https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

Naive Bayes

* Pros
— Easy and fast to train
— Fast inference
— Can be used with continuous, discrete, or mixed features

e Cons
— Does not account for feature interactions
— Does not provide good confidence estimate

* Notes

— Best when used with discrete variables, variables that are well fit by
Gaussian, or kernel density estimation



Things to remember

* Probabilistic models are a large class of
machine learning methods

* Naive Bayes assumes that features are
independent given the label P(x,y) = 1_[ P(x;i|ly)P(y)
— Easy/fast to estimate parameters _
— Less risk of overfitting when data is limited L

* You can look up how to estimate parameters
for most common probability models

— Or take partial derivative of total data/label
likelihood given parameter

* Prediction involves finding y that maximizes
P(x,y), either by trying all y or solving
partial derivative

y¥= acgrost [TP(x; )y) Ply)
* Maximizing log P(x, y) is equivalent to !
maximizing P(x, y) and often much easier < ();(3«\;,,,{_ Z'; )% P(_XC 2\{) } 133 P(Y)



Next week

* EM and Density Estimation
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