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Previously

• K-nearest neighbor algorithm

• Application to classification and regression

• Basics of datasets and generalization



Today’s lecture

• Retrieval
– “Brute force”
– Faiss library
– Approximate: LSH

• Clustering
– Kmeans
– Hierarchical Kmeans
– Agglomerative Clustering



Retrieval

• Given a new sample, find the closest sample(s) in a dataset

• Applications
– Finding information (web search)
– Prediction (e.g. nearest neighbor algorithm)
– Clustering (kmeans)



“Brute force” search
• Compute distance between query and each dataset point and 

return closest point



Brute force search pseudo-code
getNearest(x_q, X)

dist_min = Inf
idx_min = -1

For each nth sample in X:
 dist = sum((X[n]-x_q)**2) # sum square diff
 if dist < dist_min:
  dist_min = dist
  idx_min = n
return idx_min  
 



FAISS library makes even brute force search very fast

• Multi-threading, BLAS libraries, SIMD vectorization, GPU 
implementations

• KNN for MNIST takes seconds
• Also contains many approximate search methods

https://engineering.fb.com/2017/03/29/data-
infrastructure/faiss-a-library-for-efficient-similarity-search/



Repos for fast search
• FAISS: https://github.com/facebookresearch/faiss (we use this 

for HW)

• ScaNN: https://github.com/google-research/google-
research/tree/master/scann 

• USearch: https://github.com/unum-cloud/usearch 

• FAISS seems the gold standard, but ScaNN and USearch claim 
to be faster/lighter for some uses
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Approximate search

• Many algorithms exist that are faster than brute force (especially 
for very large datasets) but don’t guarantee returning exact nearest 
neighbors, e.g.
– LSH – locality sensitive hashing
– HNSW – hierarchical navigable small world graphs
– IVF – inverted file (cluster-based)

• We’ll discuss only LSH, but others are worth learning about if fast 
search is helpful for your application

• In practice, you should understand how different search methods 
work, but use an optimized library, not your own code

https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320


Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points 
to query



Basic LSH process

1. Convert each data point into an array of bits or integers, using the 
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 2^10 
buckets)

– Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)
– Can check additional buckets by flipping bits to find points within hash 

distances greater than 0



Random Projection LSH
Data Preparation
Given data {𝑿𝑿} with dimension 𝑑𝑑:
1. Center data on origin (subtract mean)
2. Create 𝑏𝑏 random vectors 𝒉𝒉 of length 𝑑𝑑
3. Convert each 𝑿𝑿𝑛𝑛 to 𝑏𝑏 bits: 𝑿𝑿𝑛𝑛𝒉𝒉𝑇𝑇 

>  0

Query
1. Convert 𝑿𝑿𝑞𝑞 to bits using 𝒉𝒉
2. Check buckets based on bit vector and similar bit vectors to return 

most similar data points

h= np.random.rand(nbits, d) - .5 



Illustration source: https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/ 

Continuous vector is converted 
to bit vector, with each bit 
representing the datapoint’s 
side of a hyperplane

Representing the plane (that 
passes through origin) with a 
normal vector, the side is 
calculated by thresholding the 
dot product with datapoint

With multiple (randomly 
generated) planes, each 
datapoint is represented as a 
bit vector

Point similarity is now a bit 
distance

Can retrieve points in the same 
“bucket” and either randomly 
pick one or search within it
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Key parameter: nbits
• Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)
• Optionally, can retrieve K closest data points and then use brute force search on 

those

Recall vs. exact nearest neighbor Time compared to brute force search

Source: https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/ 
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Nice video about LSH in faiss: 
https://youtu.be/ZLfdQq_u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/  
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Comparison of search algorithms
Index Idea Time to Build Memory (MB) Query Time (ms) Recall Notes

Flat (L2 or IP) Direct: Compare 
query to every data 

point

Fastest ~500 ~18 1.0 Good for small 
datasets or where 

query time is 
irrelevant

LSH Hash-based: 
Approximate 

search by 
approximating 
floating point 

vector with bit 
vector

Fast 20 - 600 1.7 - 30 0.4 - 0.85 Best for low 
dimensional data, 
or small datasets

HNSW Graph-based: 
Search neighbors in 
a well-constructed 

graph

Slow 600 - 1600 0.6 - 2.1 0.5 - 0.95 Very good for 
quality, high speed, 
but large memory 

usage

IVF Cluster-based: 
Assign query to 
cluster and also 
search nearby 

clusters

Medium ~520 1 - 9 0.7 - 0.95 Good scalable 
option. High-

quality, at 
reasonable speed 

and memory usageTime/memory/recall from Nearest Neighbor Indexes for Similarity Search | Pinecone: The 
Sift1M dataset consists of a dimensionality d of 128, dataset size of 1M. The above values result 
from querying for a single vector – returning 10 of the nearest matches. 

https://www.pinecone.io/learn/series/faiss/vector-indexes/
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Q1

https://tinyurl.com/AML441-L4 
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Clustering

• Assign a label to each data point based on the 
similarities between points

• Why cluster
– Represent data point with a single integer instead of a 

floating point vector
• Saves space
• Simple to count and estimate probability

– Discover trends in the data
– Make predictions based on groupings



K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center (L2 dist)

3. Compute new 
center (mean) 
for each cluster

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering


K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center (L2 dist)

3. Compute new 
center (mean) 
for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering


Pseudo-code
kmeans(X, K, maxiter)

# Create cluster centers
center = X[:K].copy()

Until maxiter iterations or convergence:

For each nth sample in X:
 # get index of nearest center
 idx[n]  = get_nearest(X[n], centers)

For each kth center:
 # get mean of data points assigned to cluster k
 center[k] = X[idx==k].mean(axis=0)

Convergence is if no idx changed in this iteration

return center, idx



What is the cost minimized by K means?

𝑖𝑖𝑖𝑖 ∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 − 𝑋𝑋𝑛𝑛
2

1. Choose ids that minimizes square cost given centers
2. Choose centers that minimize square cost given ids



K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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• All feature dimensions have equal weight

• Tends to break data into clusters of similar numbers of points 
(can be good or bad)

• Does not take into account any local structure

• Typically, no easy way to choose K

• Can be slow if the number of data points and clusters is large

What are some disadvantages of K-means in terms 
of clustering quality?



Implementation issues
• How to choose K?

– Typically chosen by hand
– Often based on the number of clusters you 

want considering time/space requirements

• How do you initialize
– Randomly choose points
– Iterative furthest point



Evaluating clustering with RMSE
• RMSE = root mean squared error
• Measures a kind of compression loss, i.e. how well is each data 

point represented by the closest cluster center

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝐶𝐶) =
1
𝑁𝑁

�
𝑛𝑛∈{0..𝑁𝑁−1}

min
𝑘𝑘

𝐶𝐶𝑘𝑘 − 𝑋𝑋𝑛𝑛 2
2



Example: K-means on MNIST

K=3, RMSE = 49.3

K=5, RMSE = 45.6

K=10, RMSE = 41.9

K=20, RMSE = 37.82

K=40, RMSE = 34.44

K=1, RMSE = 55.0



Evaluating clusters with purity

• We often cluster when there is no definitively correct answer, 
but a purity measure can be used to check the consistency 
with labels

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝑘𝑘

max
𝑦𝑦

�
𝑛𝑛:𝑖𝑖𝑑𝑑𝑛𝑛=𝑘𝑘

𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 = 𝑦𝑦) /𝑁𝑁

• Purity is the count of data points with the most common label 
in each cluster, divided by the total number of data points (N)

• E.g., labels = {0, 0, 0, 0, 1, 1, 1, 1}, cluster ids = {0, 0, 0, 0, 0, 1, 1, 1}, 
purity = ?

purity = 7/8 

• Purity can be used to select the number of clusters, or to 
compare approaches with a given number of clusters
– A relatively small number of labels can be used to estimate 

purity, even if there are many data points



Q2
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Hierarchical K-means

• Iteratively cluster points into K groups, then cluster each group 
into K groups



Presenter Notes
Presentation Notes
We then run k-means on the descriptor space. In this setting, k defines what we call the branch-factor of the tree, which indicates how fast the tree branches.
In this illustration, k is three. We then run k-means again, recursively on each of the resulting quantization cells.
This defines the vocabulary tree, which is essentially a hierarchical set of cluster centers and their corresponding Voronoi regions.
We typically use a branch-factor of 10 and six levels, resulting in a million leaf nodes. We lovingly call this the Mega-Voc.






















Presenter Notes
Presentation Notes
We now have the vocabulary tree, and the online phase can begin.
In order to add an image to the database, we perform feature extraction. Each descriptor vector is now dropped down from the root of the tree and quantized very efficiently into a path down the tree, encoded by a single integer.
Each node in the vocabulary tree has an associated inverted file index.
Indicies back to the new image are then added to the relevant inverted files.  
This is a very efficient operation that is carried out whenever we want to add an image.



Advantages of Hierarchical K-Means
• Fast cluster training

– With a branching factor of 10, can cluster into 1M clusters by 
clustering into 10 clusters ~111,111 times, each time using e.g. 10K 
data points

– Vs. e.g. clustering 1B data points into 1M clusters
– Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

• Fast lookup
– Find cluster number in O(log(K)*D) vs. O(K*D)
– 16,667x speedup in the example above



Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often 
usually isn’t a huge deal since K means is used to 
approximate data points with centroid anyway

Presenter Notes
Presentation Notes
Yes, the assignment might not be quite as good, but this usually isn’t a huge deal since K means is used to approximate data points with centroid anyway



Agglomerative clustering
• Iteratively merge the two most similar points or clusters

– Can use various distance measures
– Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages
– Ideally the minimum distance between clusters should increase after each merge (e.g. if using 

the distance between cluster centers)
– Number of clusters can be set based on when the cost to merge increases suddenly

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/



Agglomerative clustering
• With good choices of linkage, agglomerative clustering can 

reflect the data connectivity structure (“manifold”)

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/

Clustering based on distance of 5 
nearest neighbors between clusters



Applications of clustering

• K-means
– Quantization (codebooks for image generation)
– Search 
– Data visualization (show the average image of clusters of images)

• Hierarchical K-means
– Fast search (document / image search)

• Agglomerative clustering
– Finding structures in the data (image segmentation, grouping camera 

locations together)



Q3-Q4

https://tinyurl.com/AML441-L4 
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HW 1
• You should now be able to complete this HW

https://docs.google.com/document/d/1w2LerCaWVq7swyILi1jXzcwPCOikDOaO6WrD_RgXsC8/edit


Things to remember

• Use highly optimized libraries like 
FAISS for search/retrieval

• Approximate search methods like 
LSH can be used to find similar 
points quickly

• Clustering groups similar data 
points

• K-means is the must-know method, 
but there are many others
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