Retrieval and
Clustering

Applied Machine Learning
Derek Hoiem

Previously

* K-nearest neighbor algorithm
* Application to classification and regression

* Basics of datasets and generalization

Today’s lecture

* Retrieval
— “Brute force”
— Faiss library
— Approximate: LSH

* Clustering
— Kmeans
— Hierarchical Kmeans
— Agglomerative Clustering

Retrieval

* Given a new sample, find the closest sample(s) in a dataset

* Applications
— Finding information (web search)
— Prediction (e.g. nearest neighbor algorithm)
— Clustering (kmeans)

“Brute force” search

 Compute distance between query and each dataset point and
return closest point

Brute force search pseudo-code

getNearest (x g, X)

dist min = Inf

1dx min = -1

For each nth sample in X:

dist = sum((X[n]-x g)**2) # sum square diff
1f dist < dist min:

dist min = dist

1dx min = n

return idx_min

FAISS library makes even brute force search very fast

* Multi-threading, BLAS libraries, SIMD vectorization, GPU
implementations

 KNN for MNIST takes seconds
* Also contains many approximate search methods

import faiss # make faiss available

index = faiss.IndexFlatL2(d) # build the index, d=size of wvectors
here we assume xb contains a n-by-d numpy matrix of type ftloat32
index.add(xb) # add vectors to the index

print index.ntotal

xq is a n2-by-d matrix with gquery vectors

R | # we want 4 similar wvectors

D, I = index.search{xq, k) # actual search

print I

https://engineering.fb.com/2017/03/29/data-
infrastructure/faiss-a-library-for-efficient-similarity-search/

Repos for fast search

* FAISS: https://github.com/facebookresearch/faiss (we use this
for HW)

* ScaNN: https://github.com/google-research/google-
research/tree/master/scann

* USearch: https://github.com/unum-cloud/usearch

* FAISS seems the gold standard, but ScaNN and USearch claim
to be faster/lighter for some uses

https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://github.com/unum-cloud/usearch
https://github.com/unum-cloud/usearch
https://github.com/unum-cloud/usearch

Approximate search

* Many algorithms exist that are faster than brute force (especially
for very large datasets) but don’t guarantee returning exact nearest
neighbors, e.g.

— LSH — locality sensitive hashing
— HNSW — hierarchical navigable small world graphs
— IVF — inverted file (cluster-based)

 We'll discuss only LSH, but others are worth learning about if fast
search is helpful for your application

* |n practice, you should understand how different search methods
work, but use an optimized library, not your own code

https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320

Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points
to query

Basic LSH process

1. Convert each data point into an array of bits or integers, using the
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 27210

buckets)
— Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)

— Can check additional buckets by flipping bits to find points within hash
distances greater than O

Random Projection LSH

Data Preparation

Given data {X} with dimension d:

1. Center data on origin (subtract mean)

2. Create b random vectors h of length d h=np.random.rand(nbits, d) - .5
3. Convert each X, to b bits: X_ h" > 0

Query
1. Convert X to bits using h

2. Check buckets based on bit vector and similar bit vectors to return
most similar data points

e
- +ve side of

hyperplane
(

vector assigned
a lll

| -ve side of
hyperplane

both vectors
— assigned a 'O’

Continuous vector is converted
to bit vector, with each bit
representing the datapoint’s
side of a hyperplane

Hamming distance == number of mismatches

Point similarity is now a bit

distance

lllustration source: https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/

;s TN

N normal vector
\

dot-product
n-a>»o
nb<o
ne<o

Y
C N
AY

Representing the plane (that
passes through origin) with a

normal vector, the side is

calculated by thresholding the

dot product with datapoint

With multiple (randomly
generated) planes, each
datapoint is represented as a
bit vector

7477

\& AY; oooo
0001
Ol#|1 o|l=|0 oors |
o100
ool Il o jik e,
=4 =1 2 s000 772
1|14 |0 1\=|1 ro10 |2
1011 |77
1100
1l# |0 1|#2]|0 wor|
1111 B2

T T
150 200

Can retrieve points in the same

“bucket” and either randomly
pick one or search within it

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/

Key parameter: nbits

e Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)
* Optionally, can retrieve K closest data points and then use brute force search on

those
A nbits
0.6 - — 768
/\ — 512

= —— =128
S
S 0.4 -
o 64

0.2 - -

! 1 | | | 9
0.2 04 06 0.8 1.0

number of vectors (1e6)

Recall vs. exact nearest neighbor

time (as factor of Flat search)

2.0+
nbits
1.5 — 768
— 512
FlatL2 — 1238
B o J0 P SNSRI, NS e g gl

>

1 L]]
0.2 0.4 0.6 0.8 1.0
number of vectors (1e6)

Time compared to brute force search

Source: https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/

Nice video about LSH in faiss:
https://youtu.be/ZLfdQg u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/

https://youtu.be/ZLfdQq_u7Eo
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/

Comparison of search algorithms

Index

Flat (L2 or IP)

LSH

HNSW

IVF

Idea Time to Build Memory (MB) Query Time (ms) Recall

Direct: Compare Fastest ~500 ~18 1.0
guery to every data
point

Hash-based: Fast 20 - 600 1.7-30 0.4-0.85
Approximate
search by
approximating
floating point
vector with bit
vector

Graph-based: Slow 600 - 1600 0.6-2.1 0.5-0.95
Search neighbors in
a well-constructed
graph

Cluster-based: Medium ~520 1-9 0.7-0.95
Assign query to
cluster and also
search nearby
clusters Time/memory/recall from Nearest Neighbor Indexes for Similarity Search | Pinecone: The

Sift1M dataset consists of a dimensionality of 128, dataset size of 1M. The above values result
from querying for a single vector — returning 10 of the nearest matches.

Notes

Good for small
datasets or where
query time is
irrelevant

Best for low
dimensional data,
or small datasets

Very good for
quality, high speed,
but large memory
usage

Good scalable
option. High-
guality, at
reasonable speed
and memory usage

https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://www.pinecone.io/learn/series/faiss/vector-indexes/
https://www.pinecone.io/learn/series/faiss/vector-indexes/

Ql

https://tinyurl.com/AML441-L4

(=] .o5](m]
[=]

https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4

Clustering

* Assign a label to each data point based on the
similarities between points

 Why cluster

— Represent data point with a single integer instead of a
floating point vector

* Saves space
e Simple to count and estimate probability

— Discover trends in the data
— Make predictions based on groupings

K-means algorithm

@
1. Randomly E E
select K centers E o
-
2. Assign each °
point to nearest - -
center (L2 dist) % | o
[m|]
I:IU_.
“"'
3. Compute new ; .
center (mean) '3-\ ;
for each cluster e o
N

lllustration: http://en.wikipedia.org/wiki/K-means clustering

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

L]
o o
1. Randomly . o
select K centers e g'
o
om

2. Assign each
point to nearest
center (L2 dist)

Back to 2
3. Compute new ¢ C
center (mean) R -
for each cluster D%f‘.

lllustration: http://en.wikipedia.org/wiki/K-means clustering

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

Pseudo-code

kmeans (X, K, maxiter)

Create cluster centers
center = X[:K].copy ()

Until maxiter iterations or convergence:
For each nth sample in X:
get index of nearest center
idx[n] = get nearest (X[n], centers)
For each kth center:
get mean of data points assigned to cluster k
center[k] = X[1dx==k].mean (axis=0)

Convergence is 1f no i1dx changed in this iteration

return center, 1idx

What is the cost minimized by K means?

2
] * *]
id ,centers = Argmin;q centers z “centersidn — Xn”
n

1. Choose ids that minimizes square cost given centers
2. Choose centers that minimize square cost given ids

K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

What are some disadvantages of K-means in terms
of clustering quality?

All feature dimensions have equal weight

* Tends to break data into clusters of similar numbers of points
(can be good or bad)

* Does not take into account any local structure
e Typically, no easy way to choose K

* Can be slow if the number of data points and clusters is large

Implementation issues

e How to choose K?
— Typically chosen by hand

— Often based on the number of clusters you
want considering time/space requirements

* How do you initialize
— Randomly choose points
— [terative furthest point

Evaluating clustering with RMSE

e RMSE = root mean squared error

* Measures a kind of compression loss, i.e. how well is each data
point represented by the closest cluster center

1
RMSE(X,0) = | Z min||C, — Xpll2*
\ Nn€{0.N-1}

Example: K-means on MNIST

E n ﬂ K=3, RMSE = 49.3

K=1, RMSE = 55.0
E u ﬂ ﬂ n K=5, RMSE = 45.6
E ﬂ n n K=10, RMSE = 41.9

K=20, RMSE = 37.82

ols]|/12]7]sl713]712]2]4al11é]ol/]4]a]6)s

K=40, RMSE = 34.44
Ol /]/]4ls]slal3ls]lololsla|3lals]1|217]7]1/]1&]7]1é]s]3]7]9]|6]6lololalblzle]2]q]0]7

Evaluating clusters with purity

* We often cluster when there is no definitively correct answer,
but a purity measure can be used to check the consistency
with labels

purity = z (m;ax 2 6 (label,, = y))/N
K

n:id,=k

* Purity is the count of data points with the most common label
in each cluster, divided by the total number of data points (N)

e E.g.,labels={0,0,0,0,1,1,1, 1}, clusterids={0,0,0,0,0, 1, 1, 1},
purity = ?

purity = 7/8

* Purity can be used to select the number of clusters, or to
compare approaches with a given number of clusters

— Arelatively small number of labels can be used to estimate
purity, even if there are many data points

Q2

https://tinyurl.com/AML441-L4

(=] .o5](m]
[=]

https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4

Hierarchical K-means

* |teratively cluster points into K groups, then cluster each group
Into K groups

Presenter Notes
Presentation Notes
We then run k-means on the descriptor space. In this setting, k defines what we call the branch-factor of the tree, which indicates how fast the tree branches.
In this illustration, k is three. We then run k-means again, recursively on each of the resulting quantization cells.
This defines the vocabulary tree, which is essentially a hierarchical set of cluster centers and their corresponding Voronoi regions.
We typically use a branch-factor of 10 and six levels, resulting in a million leaf nodes. We lovingly call this the Mega-Voc.

Presenter Notes
Presentation Notes
We now have the vocabulary tree, and the online phase can begin.
In order to add an image to the database, we perform feature extraction. Each descriptor vector is now dropped down from the root of the tree and quantized very efficiently into a path down the tree, encoded by a single integer.
Each node in the vocabulary tree has an associated inverted file index.
Indicies back to the new image are then added to the relevant inverted files.
This is a very efficient operation that is carried out whenever we want to add an image.

Advantages of Hierarchical K-Means

* Fast cluster training

— With a branching factor of 10, can cluster into 1M clusters by
clustering into 10 clusters ~111,111 times, each time using e.g. 10K
data points

— Vs. e.g. clustering 1B data points into 1M clusters
— Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

* Fast lookup
— Find cluster number in O(log(K)*D) vs. O(K*D)
— 16,667x speedup in the example above

Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often
usually isn’'t a huge deal since K means is used to
approximate data points with centroid anyway

Presenter Notes
Presentation Notes
Yes, the assignment might not be quite as good, but this usually isn’t a huge deal since K means is used to approximate data points with centroid anyway

Agglomerative clustering

* Iteratively merge the two most similar points or clusters
— Can use various distance measures
— Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages

— ldeally the minimum distance between clusters should increase after each merge (e.g. if using
the distance between cluster centers)

— Number of clusters can be set based on when the cost to merge increases suddenly

Hierarchical Clustering Dendrogram

p5

p2

Euclidean Distance

pl

p3

S N S Sy s s S S T T R https://dashee87.github.io/data%20science/gener
Sample Index al/Clustering-with-Scikit-with-GIFs/

Agglomerative clustering

* With good choices of linkage, agglomerative clustering can
reflect the data connectivity structure (“manifold”)

Wlthnut CDI‘II‘IECtIUIty With Cnnnectwlty

Clustering based on distance of 5
nearest neighbors between clusters

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/

Applications of clustering

e K-means

— Quantization (codebooks for image generation)
— Search
— Data visualization (show the average image of clusters of images)

* Hierarchical K-means
— Fast search (document / image search)

* Agglomerative clustering

— Finding structures in the data (image segmentation, grouping camera
locations together)

Q3-Q4
https://tinyurl.com/AML441-L4

(=] .o5](m]
[=]

https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4
https://tinyurl.com/AML441-L4

HW 1

* You should now be able to complete this HW

https://docs.google.com/document/d/1w2LerCaWVq7swyILi1jXzcwPCOikDOaO6WrD_RgXsC8/edit

Things to remember

* Use highly optimized libraries like
FAISS for search/retrieval

* Approximate search methods like
LSH can be used to find similar
points quickly

e Clustering groups similar data
points

 K-means is the must-know method,
but there are many others

@,
@,
o
(] B
S [8
O
o o]
O B
[
EIDD‘

	Retrieval and Clustering�
	Previously
	Today’s lecture
	Retrieval
	“Brute force” search
	Brute force search pseudo-code
	FAISS library makes even brute force search very fast
	Repos for fast search
	Approximate search
	Locality Sensitive Hashing (LSH)
	Basic LSH process
	Random Projection LSH
	Slide Number 13
	Key parameter: nbits
	Nice video about LSH in faiss: https://youtu.be/ZLfdQq_u7Eo��which is part of this very detailed and helpful post:�https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
	Comparison of search algorithms
	Q1
	Clustering
	K-means algorithm
	K-means algorithm
	Pseudo-code
	What is the cost minimized by K means?
	K-means Demo
	Slide Number 26
	Implementation issues
	Evaluating clustering with RMSE
	Example: K-means on MNIST
	Evaluating clusters with purity
	Q2
	Hierarchical K-means
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Advantages of Hierarchical K-Means
	Are there any disadvantages of hierarchical Kmeans?
	Agglomerative clustering
	Agglomerative clustering
	Applications of clustering
	Q3-Q4
	HW 1
	Things to remember

