CS440/ECE448: Intro to Artificial Intelligence

Lecture 6: More on constraint satisfaction problems

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

CSP 1:
Map coloring
(Binary constraints)

Tuesday's key concepts

Constraint satisfaction problems:

Given: a set of n variables $X_1...X_n$, with domains (sets of possible values) $D_1...D_n$, and a set of m constraints $C_1...C_m$

Task: assign a value from D_i for each X_i subjects to the constraints.

CS440/ECE448: Intro AI

Constraint satisfaction problems are defined by...

- a set of variables X:

{WA, NT, QLD, NSW, VA, SA, TA}

a set of domains D_i
 (possible values for variable x_i):

 $D_{WA} = \{red, blue, green\}$

- a set of constraints C:

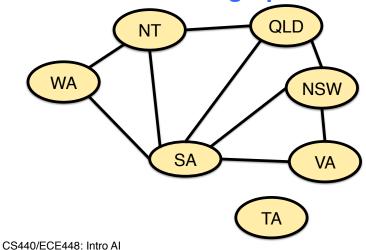
 $\{\langle (WA,NT), WA \neq NT \rangle, \langle (WA,QLD), WA \neq QLD \rangle, ... \}$ scope relation

5

7

CS440/ECE448: Intro Al

States and solutions


Each **state** is a complete or partial assignment of values to variables:

state35 = {WA=red, NT=blue, QLD= green, NSW= red, VA= green, SA= blue, TA= red}; state23 = {WA = red}

Legal assignments don't violate any constraints. Solutions are complete legal assignments

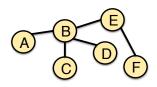
CS440/ECE448: Intro Al

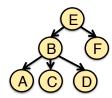
Binary constraints: constraint graph

Consistency

Node consistency: X is node-consistent iff each element in D_X satisfies unary constraints on X

Arc consistency: X is arc-consistent iff for each C(X, Y) and for each $x \in D_X$ there is a $y \in D_Y$ such that the assignment $\{X=x, Y=y\}$ satisfies C(X,Y).

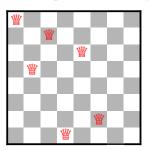

Path consistency: $\{X,Y\}$ are path consistent wrt. Z iff for every $x \in D_X$ and $y \in D_X$ there is a $z \in D_Z$ such that the assignment $\{X=x,Y=y,Z=z\}$ satisfies C(X,Z) and C(Y,Z)


CS440/ECE448: Intro Al

AC-3

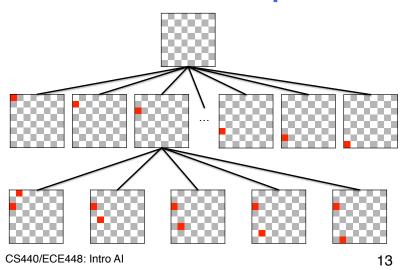
Tree-structured constraint graphs

- -Any two nodes connected by a single path
- -With n vertices, there are n-1 edges
- -Can be solved in linear time $(O(nd^2))$



CS440/ECE448: Intro Al 9 CS440/ECE448: Intro Al 10

CSP 2: 8 queens puzzle (Combining search and CSP inference)


The 8-queens puzzle

The 8-queens puzzle has multiple solutions Cannot be solved by constraint propagation alone [underdetermined CSP]

CS440/ECE448: Intro Al 12

Search tree for 8-queens

Ordering the variables

$$D_X = \{R,G,B\} C(X,Y): X \neq Y$$

 $D_Y = \{R\} C(X,Z): X \neq Z$
 $D_Z = \{G,B\}$

Which variable should we consider first?

Minimum remaining values heuristic:

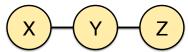
The variable with the *smallest domain*Degree heuristic:

The variable that has the most constraints

Branching factor of 8-queens

The branching factor is at most 8:

- We can *order* the variables: (CSPs are **commutative**)
 - 1. place queen in column A,
 - 2. place queen in column B,
 - 3. ...
- The constraints restrict the domains of the remaining variables


CS440/ECE448: Intro Al

14

Caveat: implied constraints

$$D_x = D_y = D_7 = \{0,1,2,3,4,5,6,7,8,9\}$$

$$C(X, Y): Y = X^2$$

 $C(Y, Z): Z = Y^2$

If we choose X as the root of the tree, we need to run DAC down the tree and up again.

15

Ordering the values

Which values of X should we consider first?

Least-constraining value heuristic:

Pick the *most likely* value first (= the one which rules out the fewest choices for other variables)

CS440/ECE448: Intro Al 17

CSP 3: Cryptarithmetic (Global constraints)

Interleaving search and inference

Search: assign (guess) value x for variable X

Forward checking algorithm:

Check that X is arc-consistent with all remaining variables Y

Maintaining-Arc-Consistency algorithm: Run AC3 on all C(Y,X) constraints to check overall arc-consistency

CS440/ECE448: Intro Al 18

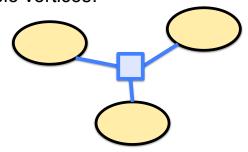
Cryptarithmetic as CSP

TWO

+ TWO

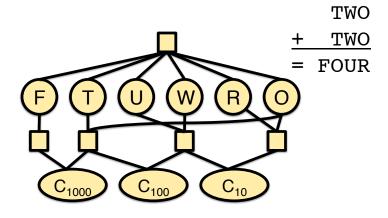
= FOUR

Task: assign a digit to each letter

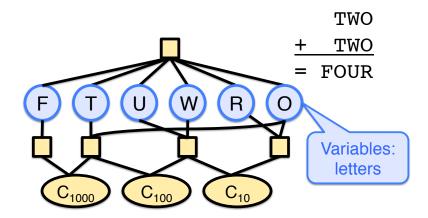

Constraints:

Each letter has a unique digit (= AllDiff constraint)
The result has to be a valid sum

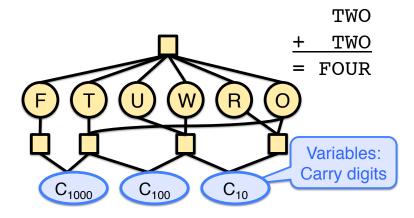
CS440/ECE448: Intro AI


Hypergraphs

In a hypergraph, hyperedges connect multiple vertices:

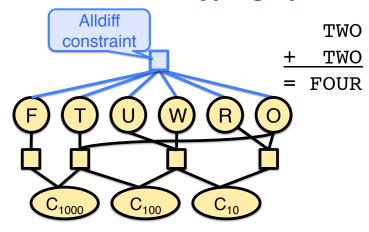

CS440/ECE448: Intro Al

Global (n-ary) constraints: Constraint Hypergraph

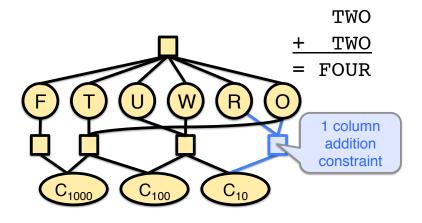


CS440/ECE448: Intro Al 22

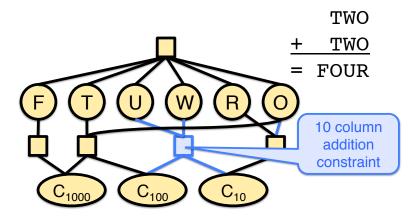
Global (n-ary) constraints: Constraint Hypergraph


Global (n-ary) constraints: Constraint Hypergraph

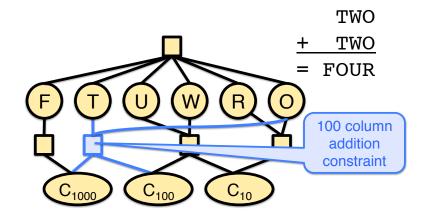
CS440/ECE448: Intro AI 23 CS440/ECE448: Intro AI 24


21

Global (n-ary) constraints: Constraint Hypergraph

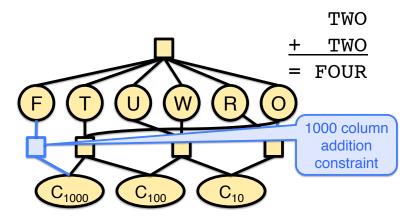

CS440/ECE448: Intro Al 25

Global (n-ary) constraints: Constraint Hypergraph



CS440/ECE448: Intro Al 26

Global (n-ary) constraints: Constraint Hypergraph



Global (n-ary) constraints: Constraint Hypergraph

CS440/ECE448: Intro AI 27 CS440/ECE448: Intro AI 28

Global (n-ary) constraints: Constraint Hypergraph

CS440/ECE448: Intro Al 29

Global constraints

With additional auxiliary variables, any n-ary constraint can be translated into a set of binary constraints:

Ternary constraint: C(X,Y,Z): X+Y=Z

Aux. variable A: $d_D = \{\langle a_1, a_2 \rangle \mid a_1 \in d_X, a_2 \in d_Y \}$

New constraints: C(A,Z): $a_1 + a_2 = Z$

 $C(A,X): a_1 = X$ $C(A,Y): a_2 = Y$

NB: Special purpose algorithms are often faster

Constraint propagation: Global constraints

Some n-ary constraints can be directly translated into a set of binary constraints:

Global constraint: AllDiff(X,Y,Z)

New binary constraints:

C(X,Y): $X \neq Y$ C(X,Z): $X \neq Z$ C(Y,Z): $Y \neq Z$

NB: Special purpose algorithms are often faster.

CS440/ECE448: Intro Al 30

CSP 3: Scheduling (Continuous domains)

Job-shop scheduling

Task: schedule the steps required to assemble a car.

Constraints:

- Each step takes a certain amount of time
- Some steps need to happen before others
- Some steps require the same tools (can't happen at the same time)
- The car needs to be assembled by 5pm

CS440/ECE448: Intro Al

Bounds consistency: large (or continuous) domains

Continuous or large finite domains are represented by lower and upper bounds:

[lower... upper]

You want to invest \$2000 in companies A and B. A's shares cost \$2, B's cost \$1:

A: [0...1000] B: [0...2000]

You need to buy at least 100 shares of each:

Bounds propagation:

A: [100...950] B: [100..1800]

Scheduling as CSP

Variables: {WheelLF, WheelRF, ... Engine,...}
Domain: 8:00am...5:00pm
Constraints:

 Front axle assembly takes 10 minutes, and has to happen before the front wheels:

AxleF + 10 ≤ WheelLF AxleF + 10 ≤ WheelRF

Front and rear axle require the same tool:
 (AxleF + 10 ≤ AxleR or AxleR + 10 ≤ AxleF)

CS440/ECE448: Intro Al 34

To conclude...

33

Today's key concepts

Your tasks

Combining CSP search and inference:

Ordering variables (minimum remaining value, degree heuristics)

Ordering values (forward checking, MAC)

Global constraints:

Constraint hypergraph; auxiliary variables

Continuous domains:

bounds consistency

Reading

Ch. 6.3, 6.5

Compass quiz

up at 2pm

CS440/ECE448: Intro Al 37 CS440/ECE448: Intro Al 38