CS440/ECE448: Intro to Artificial Intelligence

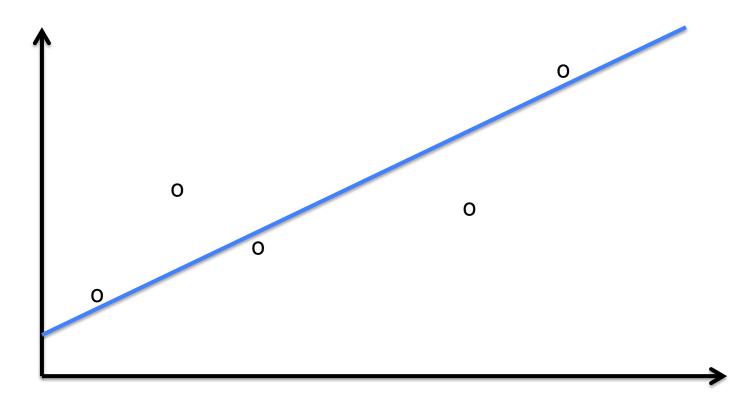
Lecture 24: Perceptrons

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Linear regression

Given some data $\{(x,y)...\}$, with $x, y \in \mathbb{R}$, find a function $f(x) = w_1x + w_0$ such that f(x) = y.



Squared Loss

We want to find a weight vector \mathbf{w} which minimizes the loss (error) on the training data $\{(x_1,y_1)...(x_N,y_N)\}$

$$L(\mathbf{w}) = \sum_{i=1}^{N} L_2(f_{\mathbf{w}}(x_i), y_i)$$
$$= \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(x_i))^2$$

Linear regression

We need to minimize the loss on the training data: $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \operatorname{Loss}(\mathbf{f}_{\mathbf{w}})$

We need to set partial derivatives of Loss(f_w) with respect to w1, w0 to zero.

This has a closed-form solution for linear regression (see book).

Gradient descent

In general, we won't be able to find a closedform solution, so we need an iterative (local search) algorithm.

We will start with an initial weight vector **w**, and update each element iteratively in the direction of its gradient:

$$w_i := w_i - \alpha d/dw_i Loss(\mathbf{w})$$

Binary classification with Naïve Bayes

For each item $\mathbf{x} = (x_1...x_d)$, we compute $f_k(\mathbf{x}) = P(\mathbf{x} \mid C_k)P(C_k) = P(C_k)\prod_i P(x_i \mid C_k)$ for both class C_1 and C_2

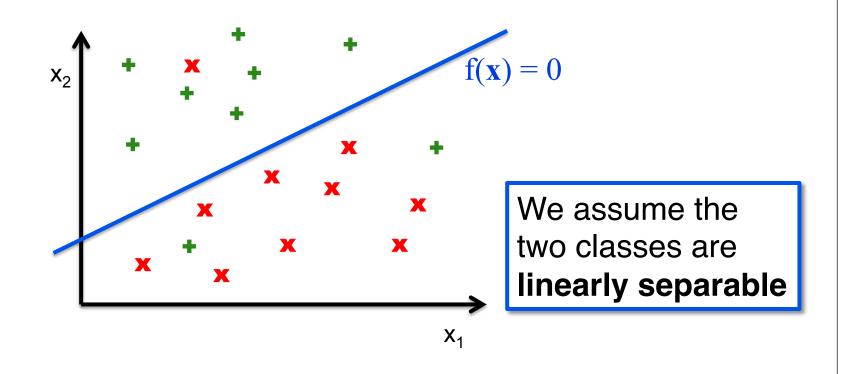
We assign class C_1 to x if $f_1(x) > f_2(x)$

Equivalently, we can define a 'discriminant function'

$$f(\mathbf{x}) = f_1(\mathbf{x}) - f_2(\mathbf{x})$$

and assign class C_1 to x if f(x) > 0

The input $\mathbf{x} = (\mathbf{x}_{1...}\mathbf{x}_{d}) \in \mathbb{R}^{d}$ is real-valued vector, We want to learn $f(\mathbf{x})$.



The input $\mathbf{x} = (\mathbf{x}_{1...}\mathbf{x}_{d}) \in \mathbb{R}^{d}$ is real-valued vector We want to learn $\mathbf{f}(\mathbf{x})$.

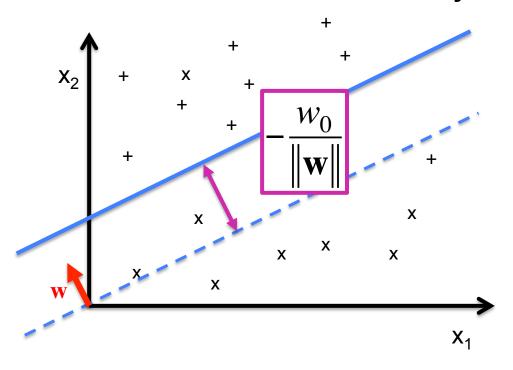
We assume the classes are linearly separable, so we choose a linear discrimant function:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + \mathbf{w}_0$$

- $-\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_d) \in \mathbb{R}^d$ is a weight vector
- $-w_0$ is a bias term
- \mathbf{w}_0 is also called a threshold: $\mathbf{w}_0 = \mathbf{w} \cdot \mathbf{x}$

The weight vector w defines the orientation of the decision boundary.

The bias term w_0 defines the perpendicular distance of the decision boundary to the origin.



Equivalently, redefine

$$\mathbf{x} = (1, \mathbf{x}_{1...} \mathbf{x}_{d}) \in \mathbb{R}^{d+1}$$

 $\mathbf{w} = (\mathbf{w}_{0}, \mathbf{w}_{1...} \mathbf{w}_{d}) \in \mathbb{R}^{d+1}$
 $\mathbf{f}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$
Define $C_1 = 1$ $C_2 = 0$

Our classification hypothesis then becomes

$$h_{\mathbf{w}}(\mathbf{x}) = 1 \text{ if } f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} \ge 0$$

0 otherwise

Our classification hypothesis then becomes

$$h_{\mathbf{w}}(\mathbf{x}) = 1 \text{ if } f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} \ge 0$$

0 otherwise

We can also think of $h_{\mathbf{w}}(\mathbf{x})$ as a threshold function.

$$h_{\mathbf{w}}(\mathbf{x}) = \text{Threshold}(\mathbf{w} \cdot \mathbf{x}),$$

where Threshold(\mathbf{z}) = 1 if $\mathbf{z} \ge 0$
0 otherwise

Learning the weights

We need to choose **w** to minimize classification loss.

But we cannot compute this in closed form, because the gradient of **w** is either 0 or undefined.

Iterative solution:

- Start with initial weight vector w.
- For each example (x,y) update weights w until all items are correctly classified.

Observations

If we classify an item (x,y) correctly, we don't need to change w.

If we classify an item (x,y) incorrectly, there are two cases:

- y = 1 (above the true decision boundary) $h_w(x) = 0$ (below the true decision boundary) We need to move our decision boundary up!
- y = 0 (below the true decision boundary) $h_w(x) = 1$ (above the true decision boundary) We need to move our decision boundary down!

Learning the weights

Evaluating y - $h_w(x)$ will tell us what to do:

- $-h_{\mathbf{w}}(\mathbf{x})$ is correct: $y h_{\mathbf{w}}(\mathbf{x}) = 0$ (stay!)
- If y = 1, but we predict $h_w(x) = 0$ $y - h_w(x) = 1 - 0 = 1$ (move up!)
- If y = 0, but we predict $h_w(x) = 1$ $y - h_w(x) = 0 - 1 = -1$ (move down!)

Learning the weights (initial attempt)

Iterative solution:

- Start with initial weight vector w.
- For each example (x,y) update weights w until all items are correctly classified.

Update rule:

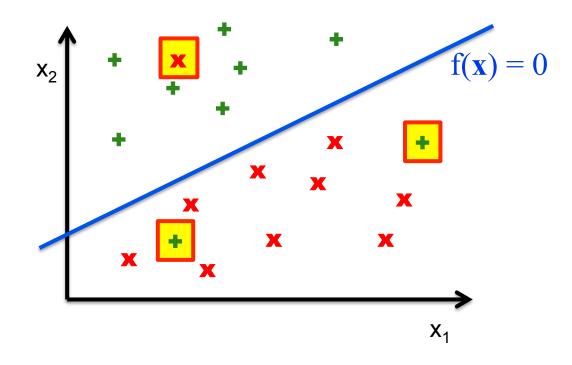
For each example (x,y) update each weight w_i :

$$\mathbf{w}_{i} := \mathbf{w}_{i} + (\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x}))\mathbf{x}_{i}$$

There is a problem:

Real data is not perfectly separable.

There will be noise, and our features may not be sufficient.



Learning the weights

Observation:

When we've only seen a few examples, we want the weights to change a lot.

After we've seen a lot of examples, we want the weights to change less and less, because we can now classify most examples correctly.

Solution: We need a learning rate which decays over time.

Learning the weights (Perceptron algorithm)

Iterative solution:

- Start with initial weight vector w.
- For each example (x,y) update weights w until w has converged (does not change significantly anymore)

Perceptron update rule ('online'):

- For each example (x,y) update each weight w_i : $w_i := w_i + \alpha (y - h_w(x))x_i$
- $-\alpha$ decays over time t (t=#examples) e.g $\alpha = n/(n+t)$

Batch/Epoch Perceptron Learning

Choose a convergence criterion (#epochs, min I∆wI, ...)

Choose a learning rate α , an initial **w**

Repeat until convergence:

 $\Delta \mathbf{w} = \Sigma_{\mathbf{x}} \alpha \text{ err } \mathbf{x}$ (sum over training set holding \mathbf{w})

 $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$ (update with accumulated changes)

Now it always converges, regardless of α (will influence the rate), and whether or not training points are linearly