CS440/ECE448: Intro to Artificial Intelligence

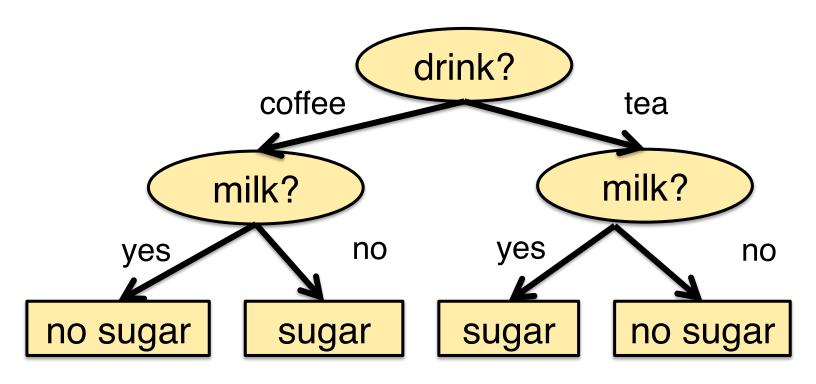
Lecture 23: Decision Trees

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Decision trees

Decision trees



Decision tree learning

Training data $D = \{(x^1, y^1), ..., (x^N, y^N)\}$

- each $\mathbf{x}^i = (x_1^i,, x_d^i)$ is a *d*-dimensional feature vector
- each y_i is the target label (class) of the i-th data point

Training algorithm:

- Initial tree = the root, corresponding to all items in D
- A node is a leaf if all its data items have the same y
- At each non-leaf node: find the feature x_i with the highest information gain, create a new child for each value of x_i , distribute the items accordingly.

Information Gain

How much information are we gaining by splitting node S on attribute A with values V(A)?

Information required before the split:

$$H(S_{parent})$$

Information required after the split:

$$\sum_{i \in V(A)} P(S_{child_i}) H(S_{child_i})$$

$$Gain(S_{parent}, A) = H(S_{parent}) - \sum_{i \in V(A)}^{N} H(S_{child_i}) \frac{\left|S_{child_i}\right|}{\left|S_{parent}\right|}$$

Dealing with numerical attributes

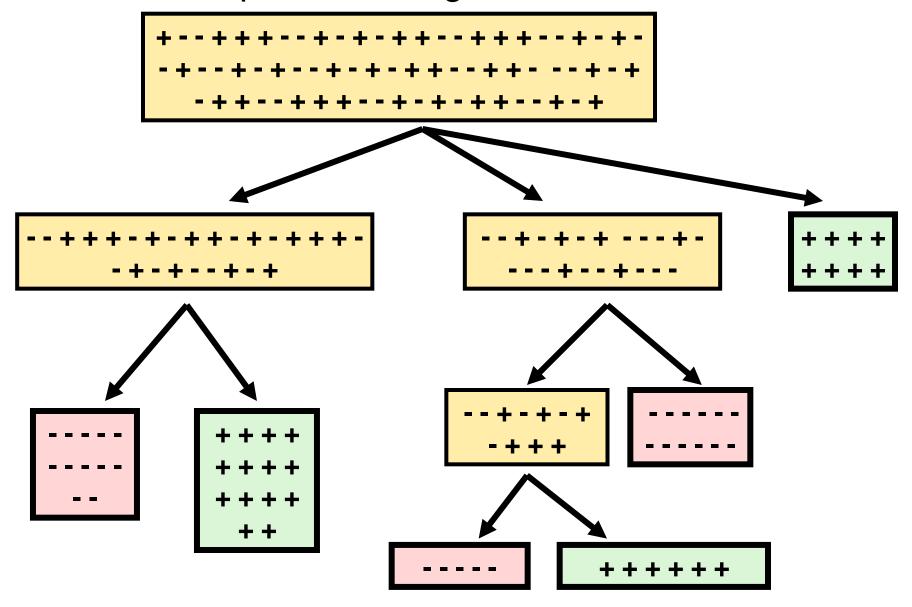
Many attributes are not boolean (0,1) or nominal (classes)

- Number of times a word appears in a text
- RGB values of a pixel
- height, weight,

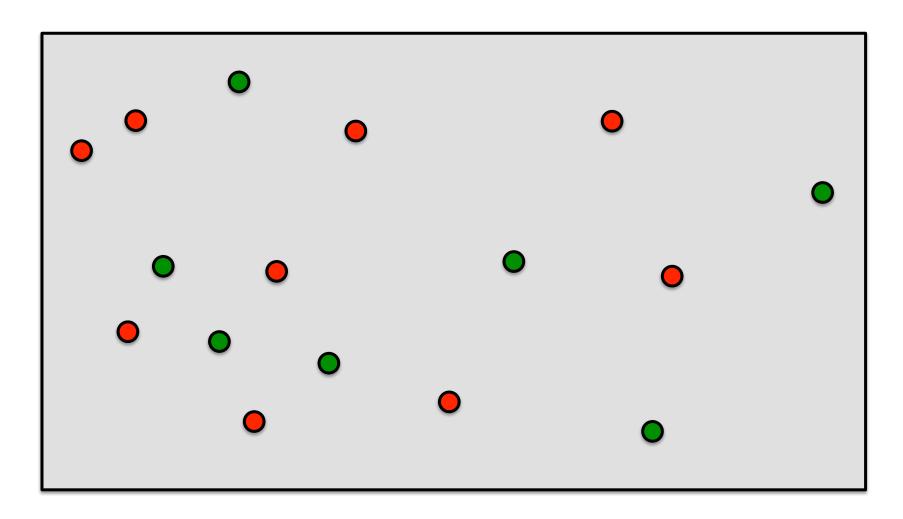
Splitting on integer or real-valued attributes:

- Find a split point: $A_i < \theta$ or $A_i \ge \theta$?

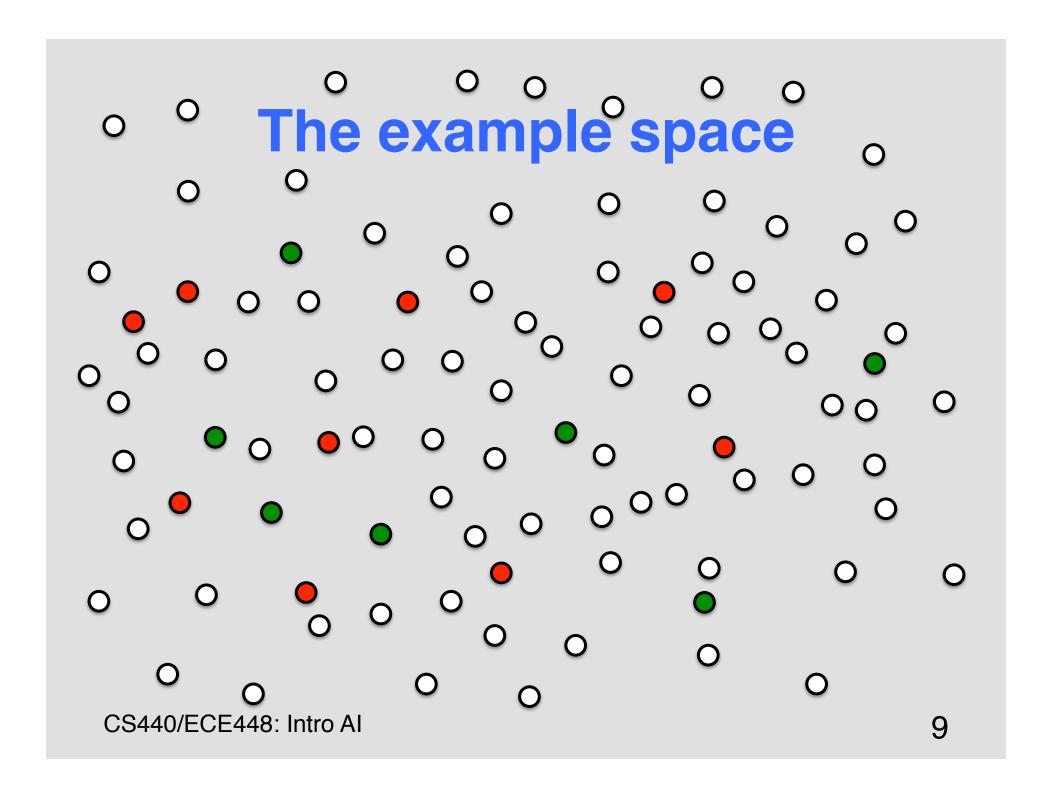
Complete Training Data



Our training data



CS440/ECE448: Intro AI



Generalization

We need to label unseen examples accurately.

But:

The training data is only a very small sample of the example space.

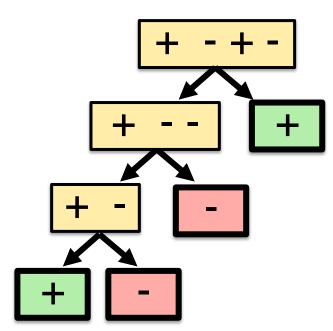
 We won't have seen all possible combinations of attribute values.

The training data may be noisy

- Some items may have incorrect attributes or labels

When does learning stop?

The tree will grow until all leaf nodes have only one label.

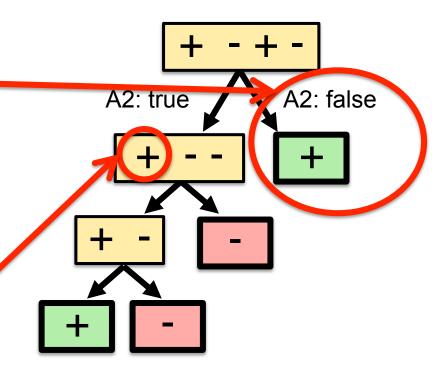


The effect of noise

If the training data are noisy, it may introduce incorrect splits.

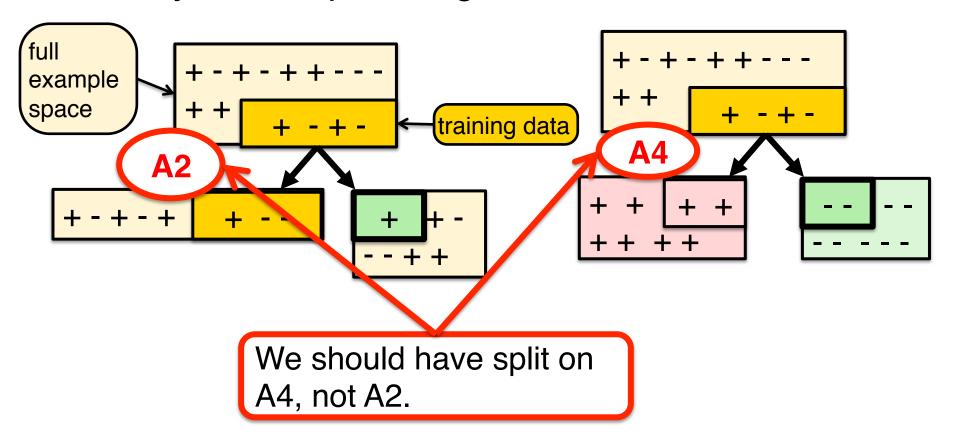
If this *false* **value** should have been *true*, we wouldn't split on *A2*.

If this + label should have been -, we wouldn't have to split any further.



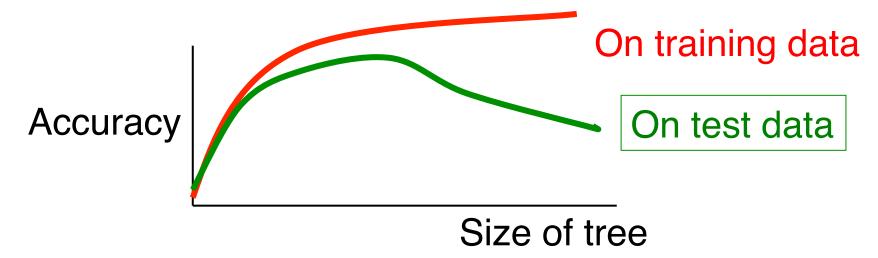
The effect of incomplete data

If the training data are incomplete, we may miss important generalizations.



Overfitting

The decision tree might overfit the particularities of the training data.



CS440/ECE448: Intro AI

Reducing Overfitting in Decision Trees

Limit the depth of the tree

– No deeper than N (say 3 or 12 or 86 - how to choose?)

Require a minimum number of examples used to select a split

- Need at least M (is 10 enough? 20?)
- Want significance: Statistical hypothesis testing can help

BEST: Learn an overfit tree and prune, using validation (held-out) data

Pruning a decision tree

 Train a decision tree on training data (keep a part of training data as unseen validation data)

2. Prune from the leaves:

Simplest method:

Replace (prune) each non-leaf node whose children are all leaves with its majority label.

Keep this change if the accuracy on validation set does not degrade.

Dealing with overfitting

Overfitting is a very common problem in machine learning.

Many machine learning algorithms have parameters that can be tuned to improve performance (because they reduce overfitting).

We use a held-out data set to set these parameters.

CS440/ECE448: Intro Al

Bias-variance tradeoff

Bias: What kind of hypotheses do we allow? We want rich enough hypotheses to capture the target function $f(\mathbf{x})$

Variance: How much does our learned hypothesis change if we resample the training data?

Rich hypotheses (e.g. large decision trees) need more data (which we may not have)

CS440/ECE448: Intro Al

Reducing variance: bagging

Create a new training set by sampling (with replacement) N items from the original data set.

Repeat this K times to get K training sets. (K is an odd number, e.g. 3, 5, ...)

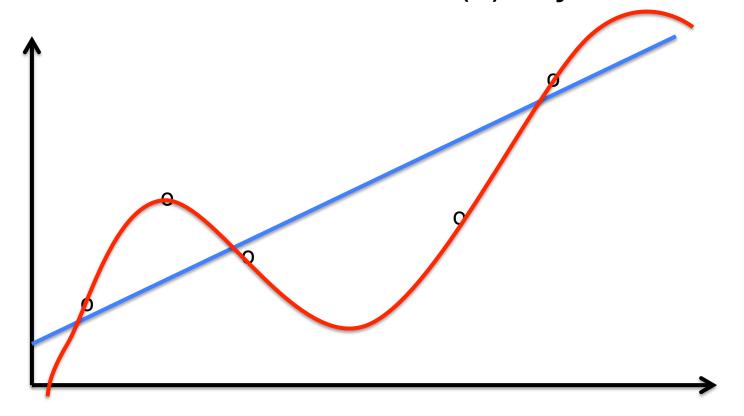
Train one classifier on each of the K training sets

Testing: take the majority vote of these K classifiers

Regression

Polynomial curve fitting

Given some data $\{(x,y)...\}$, with $x, y \in \mathbb{R}$, find a function f such that f(x) = y.



Polynomial curve fitting

$$f(x) = W_0 + W_1 x^1 + W_2 x^2 + ... + W_m x^m$$
$$= \sum_{i=0}^{m} w_i x^i$$

Task:

find weights $w_0 \dots w_m$ to best fit the data.

This requires a loss (error) function

Squared Loss

We want to find a weight vector \mathbf{w} which minimizes the loss (error) on the training data $\{(x_1,y_1)...(x_N,y_N)\}$

$$L(\mathbf{w}) = \sum_{i=1}^{N} L_2(f_{\mathbf{w}}(x_i), y_i)$$
$$= \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(x_i))^2$$

Accounting for model complexity

We would like to find the simplest polynomial to fit our data.

We need to penalize the degree of the polynomial.

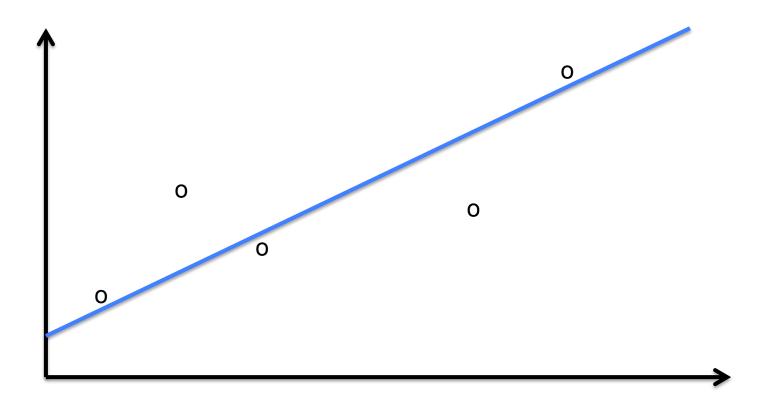
We can add a regularization term to the loss which penalizes for overly complex functions)

CS440/ECE448: Intro Al

Regression

Linear regression

Given some data $\{(x,y)...\}$, with $x, y \in \mathbb{R}$, find a function $f(x) = w_1x + w_0$ such that f(x) = y.



Linear regression

We need to minimize the loss on the training data: $\mathbf{w} = \operatorname{argmin}_{\mathbf{w}} \operatorname{Loss}(f_{\mathbf{w}})$

We need to set partial derivatives of Loss(f_w) with respect to w1, w0 to zero.

This has a closed-form solution (see book).