CS440/ECE448: Intro to Artificial Intelligence

Lecture 21: Classification; Decision Trees

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Supervised learning: classification

Supervised learning

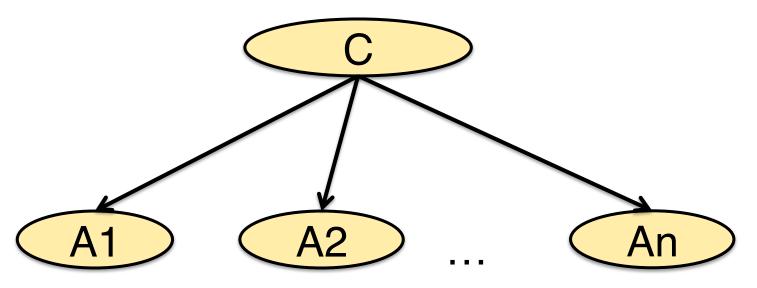
Given a set D of N items x_i , each paired with an output value $y_i = f(x_i)$, discover a function h(x) which approximates f(x)

$$D = \{(x_1, y_1), \dots (x_N, y_N)\}$$

Typically, the **input** values x are (real-valued or boolean) vectors: $x_i \in \mathbb{R}^n$ or $x_i \in \{0,1\}^n$

The **output** values *y* are either boolean *(binary classification)*, elements of a finite set *(multiclass classification)*, or real *(regression)*

The Naïve Bayes Classifier



Each item has a number of attributes

$$A_1 = a_1, ..., A_n = a_n$$

We predict the class c based on

$$c = argmax_c \prod_i P(A_i = a_i \mid C=c) P(C=c)$$

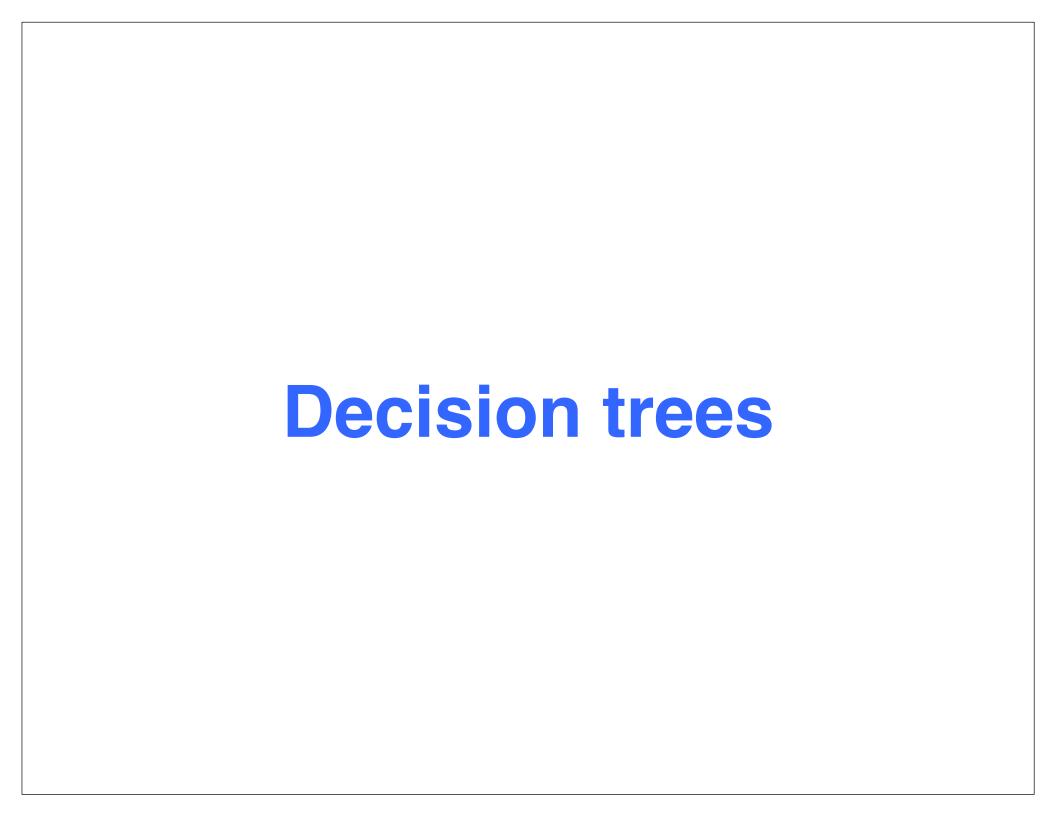
CS440/ECE448: Intro Al

An example

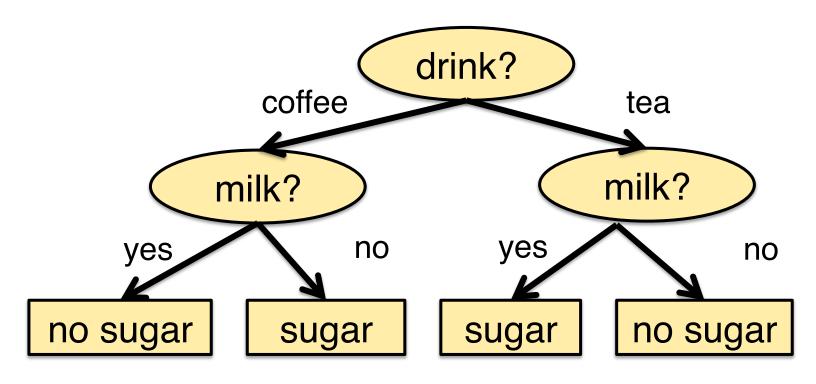
x 1	x2	Υ
A1: drink	A2: milk?	C: sugar?
coffee	no	yes
coffee	yes	no
tea	yes	yes
tea	no	no

Can you train a Naïve Bayes classifier to predict whether the customer wants sugar or not?

What is P(coffee I sugar)?



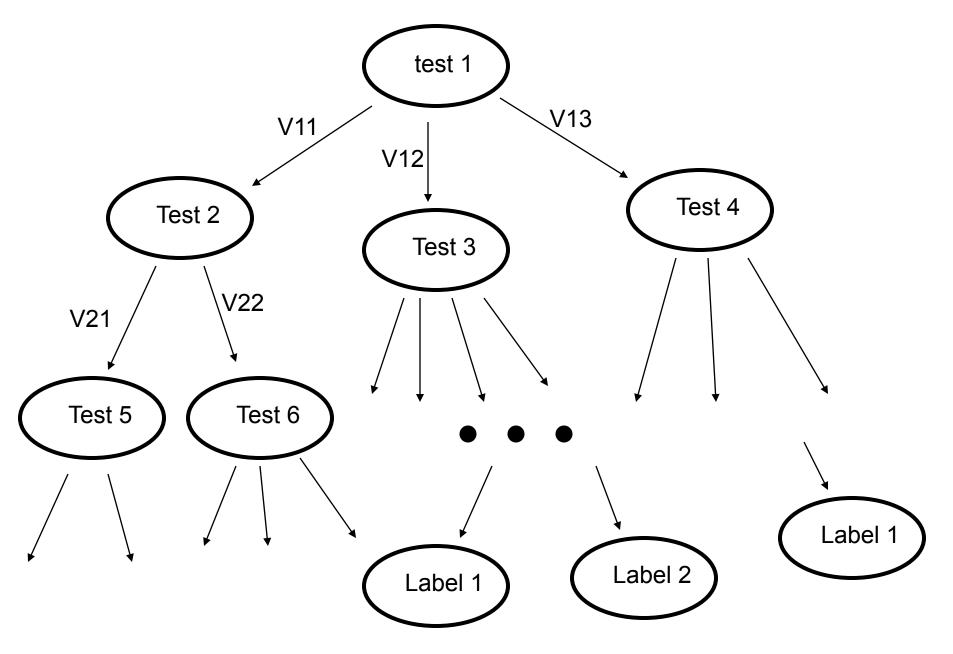
Decision trees



In this example, the attributes (drink; milk?) are not conditionally independent given the class ('sugar')

CS440/ECE448: Intro Al

What is a decision tree?

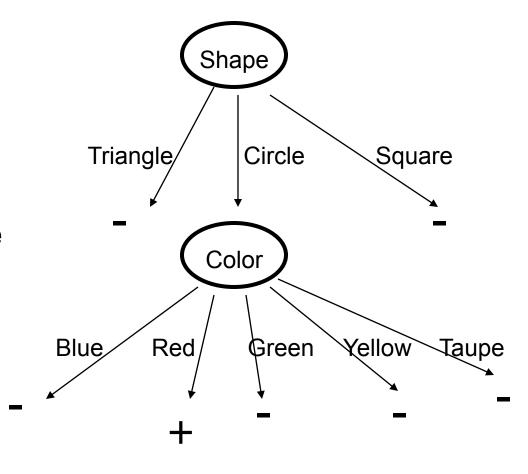


Suppose I like circles that are red

(I might not be aware of the rule)

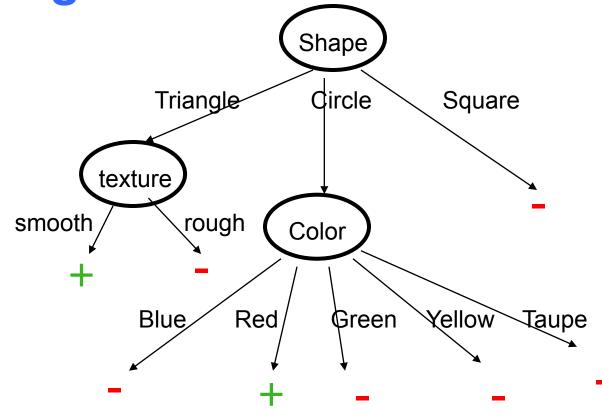
Features:

- Owner:John, Mary, Sam
- Size: Large, Small
- Shape:Triangle, Circle, Square
- Texture:Rough, Smooth
- Color:Blue, Red, Green,Yellow, Taupe



 $\forall x [Like(x) \Leftrightarrow (Circle(x) \land Red(x))]$

Suppose I like circles that are red and triangles that are smooth



 $\forall x [Like(x) \Leftrightarrow ((Circle(x) \land Red(x)) \lor v (Triangle(x) \land Smooth(x))]$

Expressiveness of decision trees

Consider binary classification (y=true,false) where the items have Boolean attributes.

In the decision tree, each path from the root to a leaf node is a conjunction of propositions.

The goal (y=true) corresponds to a disjunction of such conjunctions (=all the paths from the root to a true leaf)

CS440/ECE448: Intro Al

How many different decision trees are there?

With n Boolean attributes, there are 2^n possible kinds of examples.

One decision tree = assign *true* to *one subset* of these 2^n kinds of examples.

There are 2^{2ⁿ} different subsets of examples.

There are 2^{2^n} possible decision trees! (10 attributes: $2^{1024} \approx 10^{308}$ trees; 20 attributes $\approx 10^{300,000}$ trees)

CS440/ECE448: Intro Al

Example space and hypothesis space

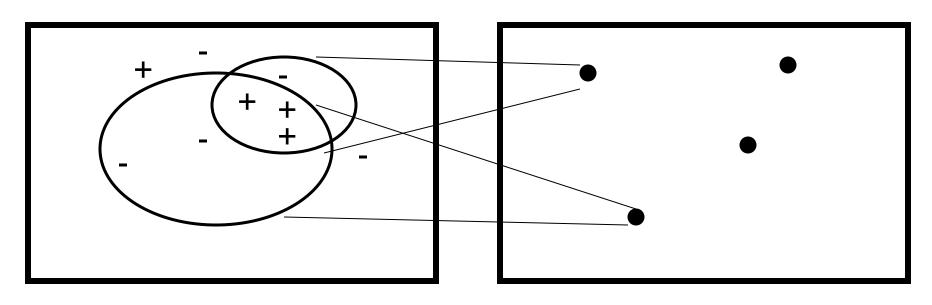
Example space:

The set of all possible examples **x** (this depends on our feature representation)

Hypothesis space:

The set of all possible hypotheses h(x) that a particular classifier can express.

Machine Learning as an Empirically Guided Search through the Hypothesis Space



Examples

Hypotheses

How should we find a good decision tree?

We cannot enumerate all trees.

We will need to do a greedy (local) search.

Tests (splits) need to be informative, i.e. after a split we need to be more certain about which label to assign to the items that meet the test.

Complete Training Data

Entropy H(S)

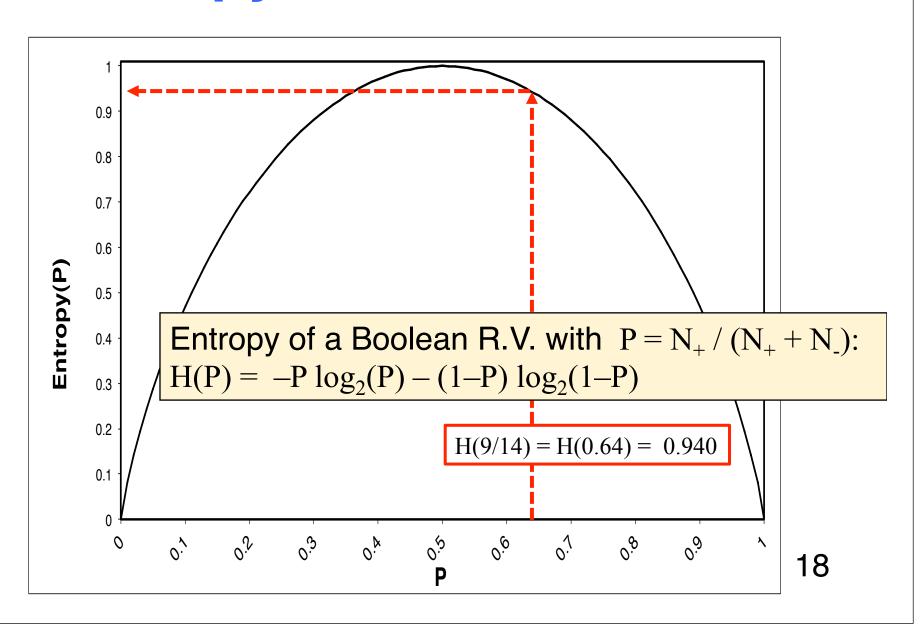
The entropy H(S) of a random variable S measures the uncertainty associated with S.

It also corresponds to the average number of bits required to specify *S*.

$$H(S) = -\sum_{i=1}^{N} P(s_i) \log_2 P(s_i)$$

CS440/ECE448: Intro Al

Entropy of Boolean R.V.s



H(S) = bits required to label some $x \in S$ What is the upper bound if label $\in \{+,-\}$ What is $H(S_1)$?

$$S_1 = +++$$

```
H(S) = bits required to label some x \in S
What is the upper bound if label \in \{+,-\}
What is H(S_1)?
What is H(S_2)?
S_2 = \frac{1}{2}
```

```
H(S) = bits required to label some x \in S
What is the upper bound if label \in \{+,-\}
What is H(S_1)?
What is H(S_2)?
What is H(S_3)?
```

```
H(S) = bits required to label some x \in S
What is the upper bound if label \in \{+,-\}
What is H(S_1) ?
What is H(S_2) ?
What is H(S_3) ?
```

```
H(S) = bits required to label some x \in S
What is the upper bound if label \in \{+,-\}
What is H(S_1)?
What is H(S_2)?
What is H(S_3)?
What is H(S_4)?
What is H(S_5)? Think of expected number of bits
What is H(S_6)?
              H(S_6) should be closer to 0 than to 1
```

 $H(S) = bits required to label some <math>x \in S$ Label $\in \{A,B,C,D,E,F\}$, Upper bound now? What is $H(S_7)$?

$$S_{7} = \begin{bmatrix} FABBAABA \\ DAAADABE \\ AFAABBAC \\ AEBAAABC \\ AEBAAABC \\ AEBAAABC \\ AAAAAAAA \\ BBBBBBB \\ BBBBBB \\ BBBBBB \\ BCCDDEEFF 2222 \end{bmatrix}$$

Sometimes needs 4 bits / label (worse than 3)

What is the expected number of bits?

- 16/32 use 1 bit
- 8/32 use 2 bits
- 4 x 2/32 use 4 bits

$$S_7 = \begin{bmatrix} AAAAAAAA & 16 \\ AAAAAAAAA & 8 \\ BBBBBBBB & 8 \\ CCDDEEFF & 2222 \end{bmatrix}$$

$$0.5(1) + 0.25(2) + 0.0625(4) + 0.0625(4) + 0.0625(4) + 0.0625(4)$$

$$= 0.5 + 0.5 + 0.25 + 0.25 + 0.25 + 0.25$$

$$= 2$$
FOR SAY

A 1

B 01

C 0000

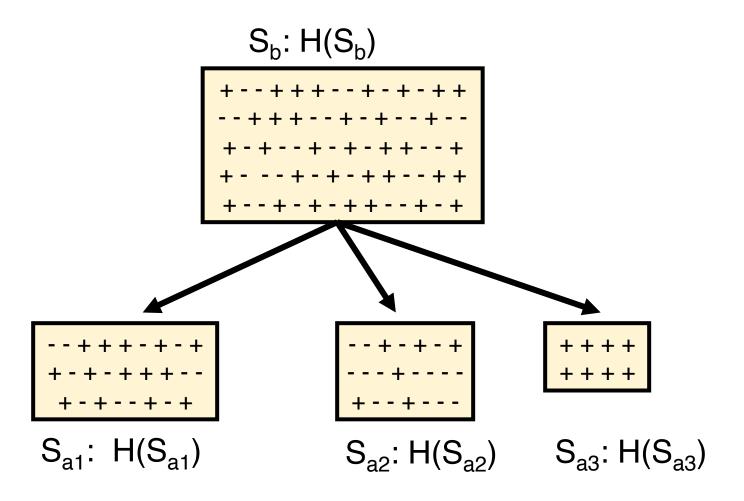
D 0001

E 0010

F 0011

$$H(S) = \sum_{v \in Labels} -P(v) \cdot \log_2(P(v))$$

Information Gain



Information Gain

How much information are we gaining by splitting node S on attribute A with values V(A)?

Information required before the split:

$$H(S_{parent})$$

Information required after the split:

$$\sum_{i \in V(A)} P(S_{child_i}) H(S_{child_i})$$

$$Gain(S_{parent}, A) = H(S_{parent}) - \sum_{i \in V(A)}^{N} H(S_{child_i}) \frac{\left|S_{child_i}\right|}{\left|S_{parent}\right|}$$

Will I Play Tennis?

Features:

Outlook: Sun, Overcast, Rain

Temperature: Hot, Mild, Cool

Humidity: High, Normal, Low

– Wind: Strong, Weak

- Label: +, -

Features are evaluated in the morning Tennis is played in the afternoon

Training Set

- 1. SHHW
- 2. SHHS
- 3. OHHW
- 4. RMHW
- 5. RCNW
- 6. RCNS
- 7. OCNS
- 8. SMHW
- 9. S C N W
- 10. RMNW
- 11. SMNS
- 12. OMHS
- 13. OHNW
- 14. RMHS

- Outlook: S, O, R
- Temp: H, M, C
- Humidity: H, N, L
- Wind: S, W

9 + 5 - examples

Current entropy:

H(9/14)

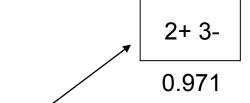
 $= -9/14 \log_2(9/14) - 5/14 \log_2(5/14)$

≈ 0.94

Outlook Gain = 0.246

7.
$$OCNS +$$

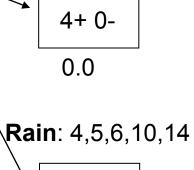
Sun: 1,2,8,9,11



9+5-

0.940

Overcast: 3,7,12,13



Information After:

$$+ 0.0 * 4/14$$

$$= 0.694$$

Information Gain:

$$0.940 - 0.694$$

$$= 0.246$$

Wind Gain = 0.048

- 1. SHH<mark>W</mark>
- 2. SHH<mark>S</mark>
- 3. OHH<mark>W</mark>
- 4. RMHW
- 5. RCNW
- 6. RCNS
- 7. OCNS

+

+

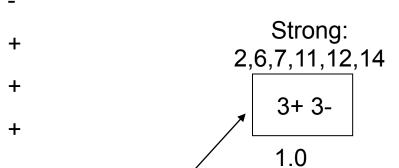
+

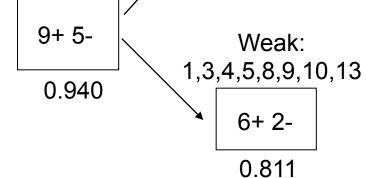
+

+

+

- 8. SMHW
- 9. SCNW
- 10. RMN<mark>W</mark>
- 11. S M N S
- 12. OMHS
- 13. OHNW
- 14. RMH<mark>S</mark>





Information After:

- 1.0 * 6/14
- + 0.811 * 8/14
- = 0.892

Information Gain:

0.940 - 0.892

=0.048

Information Gain

Outlook 0.25

Temperature 0.03

• Humidity 0.15

• Wind 0.05

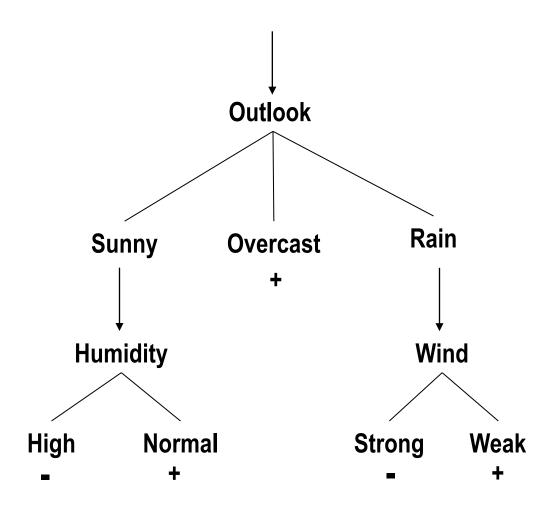
Outlook provides greatest local gain

Split on Outlook

```
RCNW
SHHW -
                     SCNW
                                 OHNW
                                        +
SHHS -
          RCNS
                     RMNW
                                 RMHS
OHHW +
          OCNS +
                     SMNS
                            +
RMHW +
          SMHW
                     OMHS
                            +
    Sunny
                    Overcast
                                Rain
SHHW
                OHHW
                               RMHW
SHHS
                OCNS +
                               RCNW
SMHW
                OMHS +
                               RCNS
                OHNW
SCNW
                               RMNW
SMNS
                               RMHS
```

Now recurse on each smaller set

Final Decision Tree



Suppose under Sunny we split on Outlook (again) instead of Humidity?

What can we say about entropy as we measure additional features?

Learning Decision Trees for Classification

- Ross Quinlan
 - **ID3**
 - -C4.5
 - C5.0 (commercial product)
 - -AI/ML
- Breiman, Friedman, Olshen, & Stone
 - CART
 - Statistics

Today's reading

Chapter 18.3

CS440/ECE448: Intro AI