CS440 Introduction to Artificial Intelligence

Lecture 20: Bayesian learning; conjugate priors

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center Office Hours: Thu, 2:00-3:00pm

http://www.cs.uiuc.edu/class/sp11/cs440

The binomial distribution

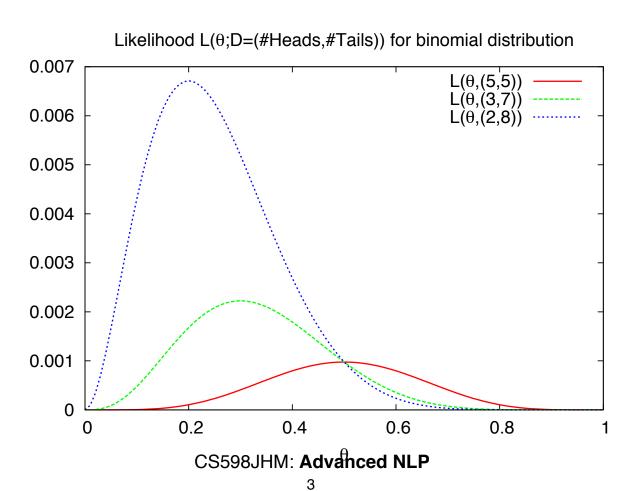
If p is the probability of heads, the probability of getting exactly k heads in n independent yes/no trials is given by the binomial distribution Bin(n,p):

$$P(k \text{ heads}) = {n \choose k} p^k (1-p)^{n-k}$$
$$= \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

Expectation E(Bin(n,p)) = npVariance var(Bin(n,p)) = np(1-p)

Binomial likelihood

What distribution does p (probability of heads) have, given that the data D consists of #H heads and #T tails?



Parameter estimation

Given data D=HTTHTT, what is the probability θ of heads?

- Maximum likelihood estimation (MLE): Use the θ which has the highest likelihood $P(D|\theta)$. $\theta_{MLE} = \arg\max_{\alpha} P(D|\theta)$
- -Maximum a posterior (MAP): Use the θ which has the highest posterior probability $P(\theta \mid D)$. $\theta_{MAP} = \arg\max_{\theta} P(\theta \mid D) = \arg\max_{\theta} P(\theta) P(D \mid \theta)$
- -Bayesian estimation:

Integrate over all θ = compute the **expectation of** θ **given D**:

$$P(x = H|D) = \int_0^1 P(x = H|\theta)P(\theta|D)d\theta = E[\theta|D]$$

Maximum likelihood estimation

- Maximum likelihood estimation (MLE): find θ which maximizes likelihood $P(D \mid \theta)$.

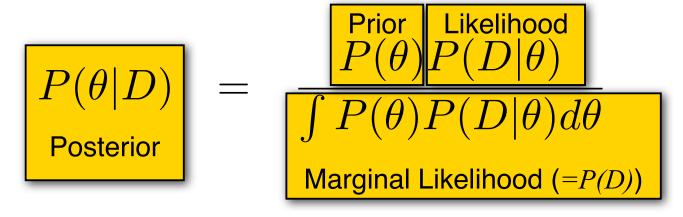
$$\theta^* = \arg \max_{\theta} P(D|\theta)$$

$$= \arg \max_{\theta} \theta^H (1-\theta)^T$$

$$= \frac{H}{H+T}$$

Bayesian statistics

- Data D provides evidence for or against our beliefs. We update our belief θ based on the evidence we see:



Bayesian estimation

Given a prior $P(\theta)$ and a likelihood $P(D|\theta)$, what is the posterior $P(\theta|D)$?

How do we choose the prior $P(\theta)$?

- The posterior is proportional to prior x likelihood: $P(\theta | D) \propto P(\theta) P(D | \theta)$
- The likelihood of a binomial is: $P(D|\theta) = \theta^H (1-\theta)^T$
- If prior $P(\theta)$ is proportional to powers of θ and $(1-\theta)$, posterior will also be proportional to powers of θ and $(1-\theta)$: $P(\theta) \propto \theta^{a}(1-\theta)^{b}$ $\Rightarrow P(\theta | D) \propto \theta^{a}(1-\theta)^{b} \theta^{H}(1-\theta)^{T} = \theta^{a+H}(1-\theta)^{b+T}$

In search of a prior...

We would like something of the form:

$$P(\theta) \propto \theta^a (1-\theta)^b$$

But -- this looks just like the binomial:

$$P(k \text{ heads}) = {n \choose k} p^k (1-p)^{n-k}$$
$$= \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

.... except that k is an integer and θ is a real with $0 < \theta < 1$.

The Gamma function

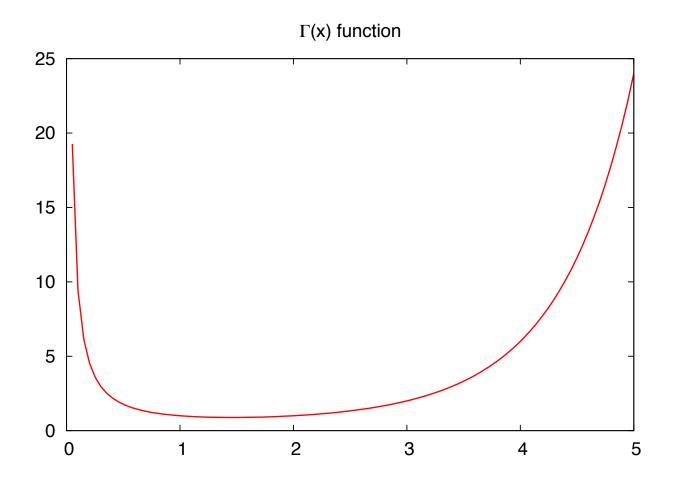
The Gamma function $\Gamma(x)$ is the generalization of the factorial x! (or rather (x-1)!) to the reals:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \quad \text{for } \alpha > 0$$

For
$$x > 1$$
, $\Gamma(x) = (x-1)\Gamma(x-1)$.

For positive integers, $\Gamma(x) = (x-1)!$

The Gamma function



The Beta distribution

A random variable X (0 < x < 1) has a Beta distribution with (hyper)parameters α ($\alpha > 0$) and β ($\beta > 0$) if X has a continuous distribution with probability density function

$$P(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

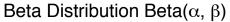
The first term is a normalization factor (to obtain a distribution)

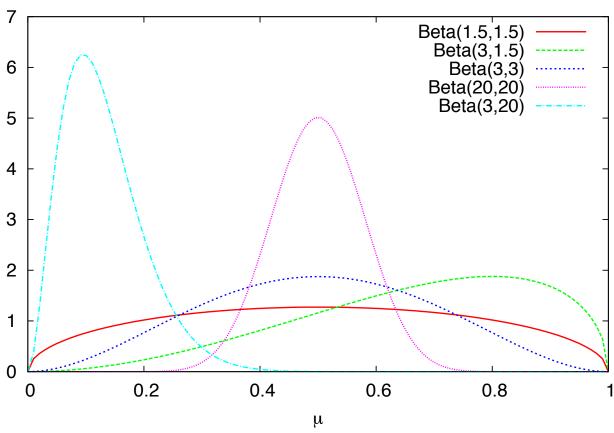
$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

Expectation: $\frac{\alpha}{\alpha+\beta}$

Beta(α , β) with $\alpha > 1$, $\beta > 1$

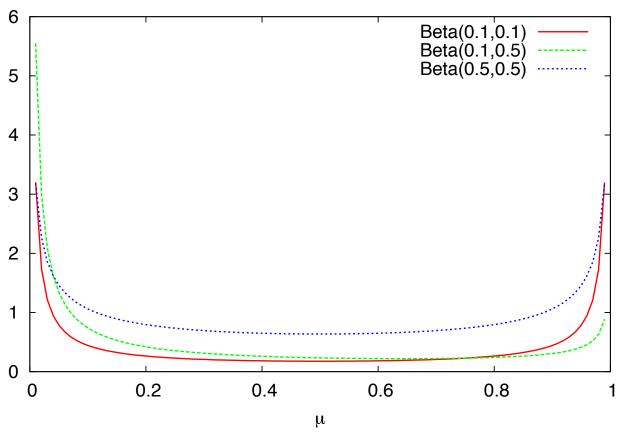
Unimodal





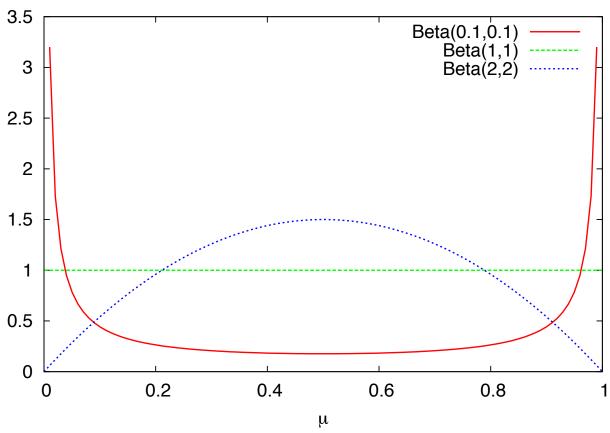
Beta(α , β) with α <1, β <1

U-shaped



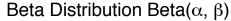
$Beta(\alpha,\beta)$ with $\alpha=\beta$

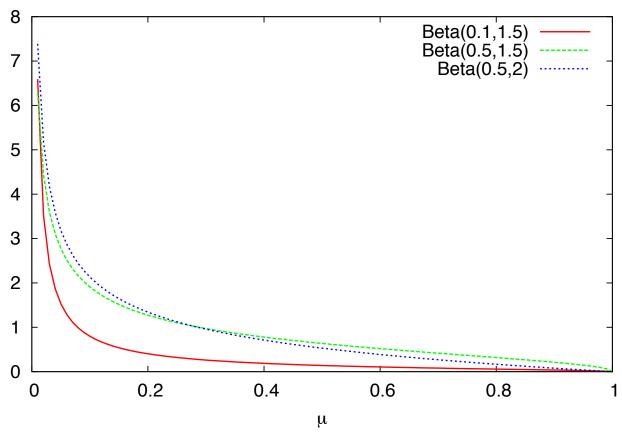
Symmetric. $\alpha = \beta = 1$: uniform



Beta(α , β) with α <1, β >1

Strictly decreasing





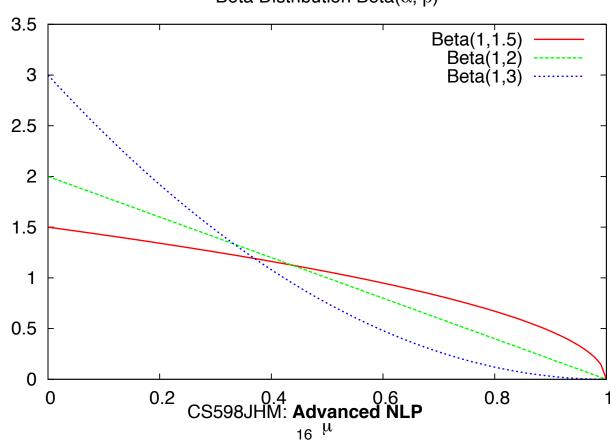
Beta(α,β) with $\alpha = 1, \beta > 1$

 $\alpha = 1$, $1 < \beta < 2$: strictly concave.

 $\alpha = 1$, $\beta = 2$: straight line

 $\alpha = 1$, $\beta > 2$: strictly convex

Beta Distribution Beta(α , β)



Beta as prior for binomial

Given a **prior** $P(\theta \mid \alpha, \beta) = \text{Beta}(\alpha, \beta)$, and **data** D = (H, T), what is our posterior?

$$P(\theta|\alpha,\beta,H,T) \propto P(H,T|\theta)P(\theta|\alpha,\beta)$$

$$\propto \theta^H (1-\theta)^T \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$= \theta^{H+\alpha-1}(1-\theta)^{T+\beta-1}$$

With normalization

$$P(\theta|\alpha,\beta,H,T) = \frac{\Gamma(H+\alpha+T+\beta)}{\Gamma(H+\alpha)\Gamma(T+\beta)}\theta^{H+\alpha-1}(1-\theta)^{T+\beta-1}$$

$$= \operatorname{Beta}(\alpha + H, \beta + T)$$

So, what do we predict?

Our Bayesian estimate for the next coin flip $P(x=1 \mid D)$:

$$P(x = H|D) = \int_0^1 P(x = H|\theta)P(\theta|D)d\theta$$

$$= \int_0^1 \theta P(\theta|D)d\theta$$

$$= E[\theta|D]$$

$$= E[Beta(H + \alpha, T + \beta)]$$

$$= \frac{H + \alpha}{H + \alpha + T + \beta}$$

Conjugate priors

The beta distribution is a **conjugate prior** to the binomial: the resulting posterior is also a beta distribution.

We can interpret its parameters α , β as pseudocounts $P(H \mid D) = (H + \alpha)/(H + \alpha + T + \beta)$

All members of the *exponential family* of distributions have conjugate priors.

Examples:

- Multinomial: conjugate prior = Dirichlet
- Gaussian: conjugate prior = Gaussian

Multinomials: Dirichlet prior

Multinomial distribution:

Probability of observing each possible outcome c_i exactly X_i times in a sequence of n yes/no trials:

$$P(X_1 = x_i, \dots, X_K = x_k) = \frac{n!}{x_1! \cdots x_K!} \theta_1^{x_1} \cdots \theta_K^{x_K} \quad \text{if } \sum_{i=1}^N x_i = n$$

Dirichlet prior:

$$Dir(\theta|\alpha_1,...\alpha_k) = \frac{\Gamma(\alpha_1 + ... + \alpha_k)}{\Gamma(\alpha_1)...\Gamma(\alpha_k)} \prod_{k=1}^{k} \theta_k^{\alpha_k - 1}$$

More about conjugate priors

- We can interpret the hyperparameters as "pseudocounts"
- Sequential estimation (updating counts after each observation) gives same results as batch estimation
- Add-one smoothing (Laplace smoothing) = uniform prior
- On average, more data leads to a sharper posterior (sharper = lower variance)