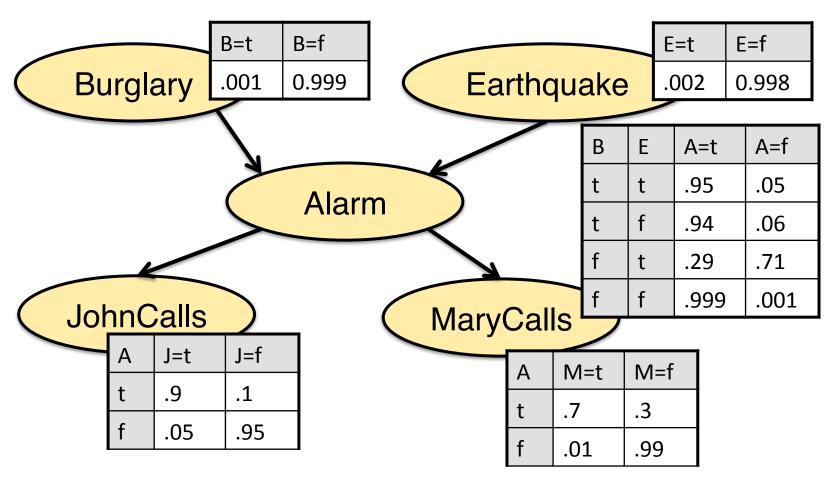
CS440/ECE448: Intro to Artificial Intelligence

Lecture 18: Bayesian Networks continued

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

The Burglary example

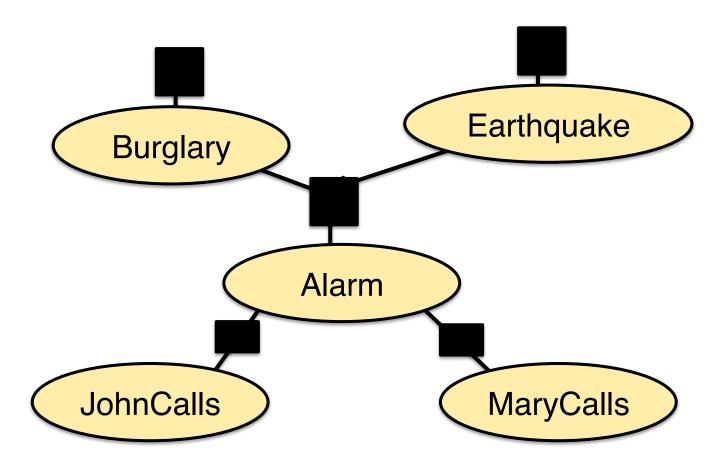


What is the probability of a burglary if John and Mary call?

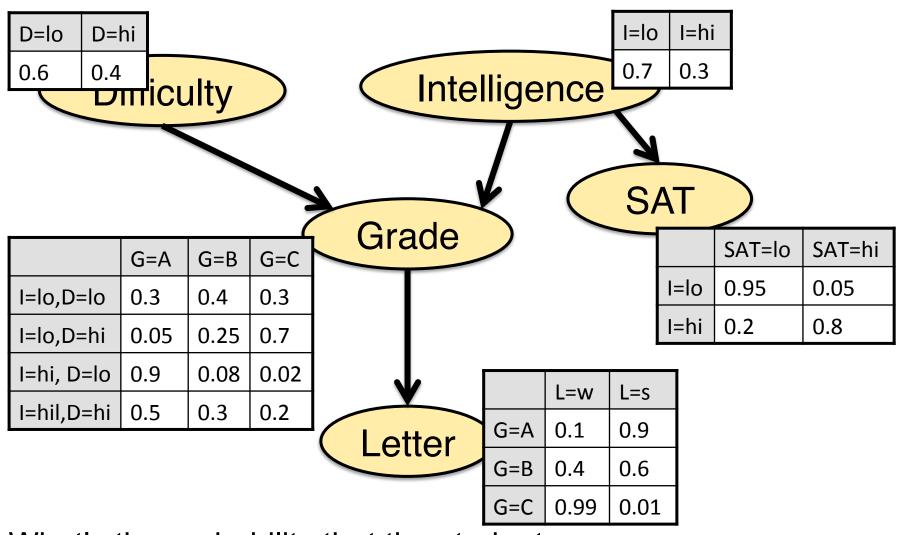
CS440/ECE448: Intro Al

Factor graphs

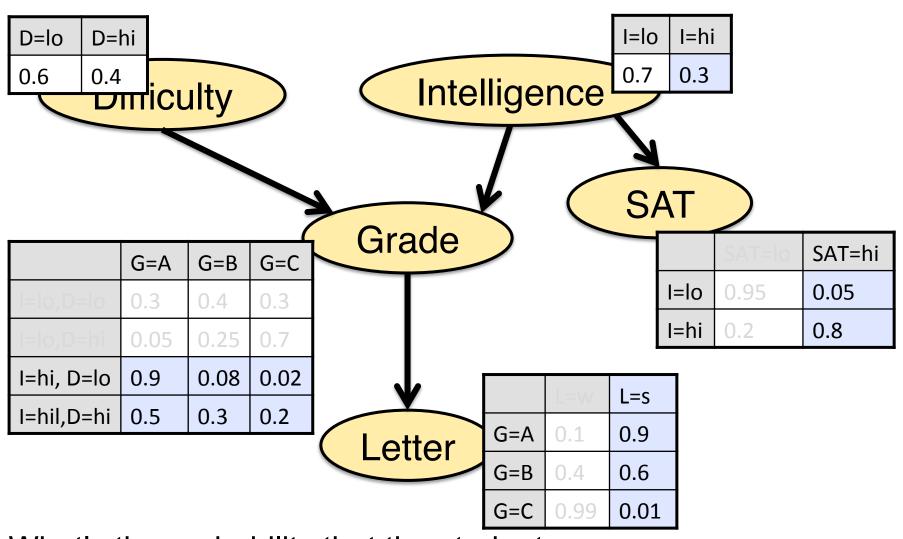
Each CPT is one factor (= black box)



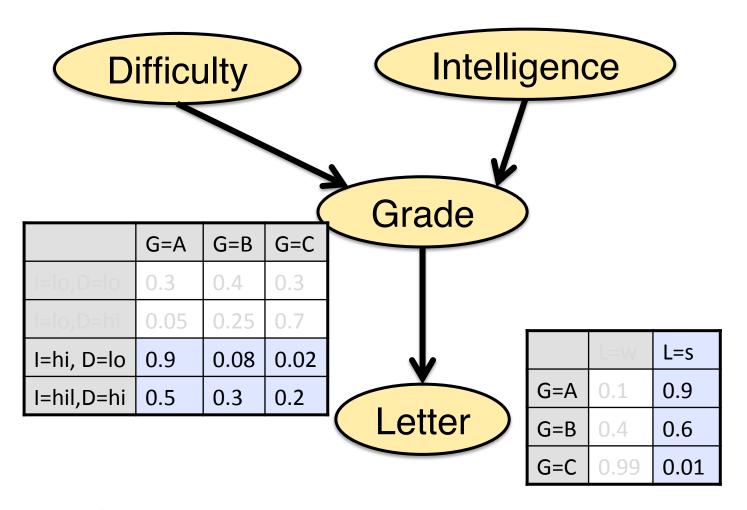
CS440/ECE448: Intro AI



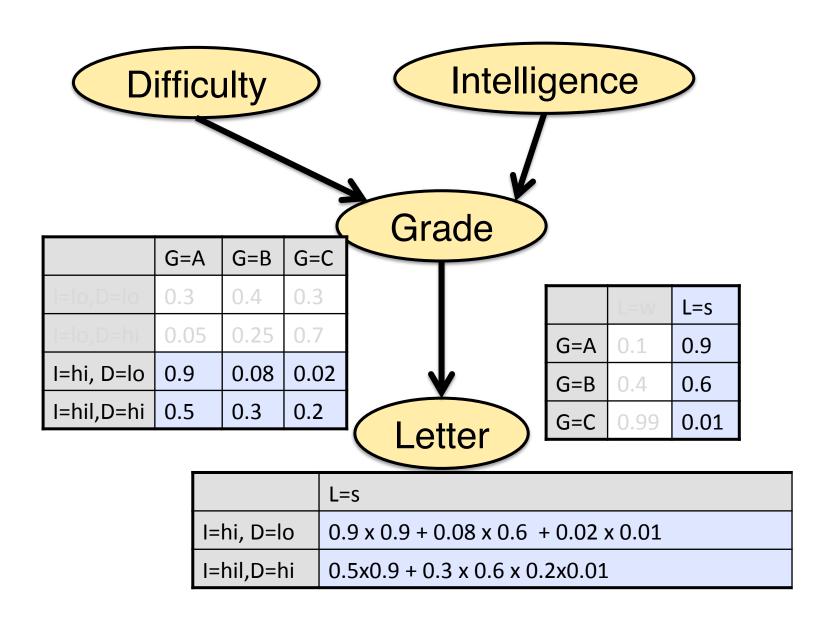
CS440/ECE448: Intro AI

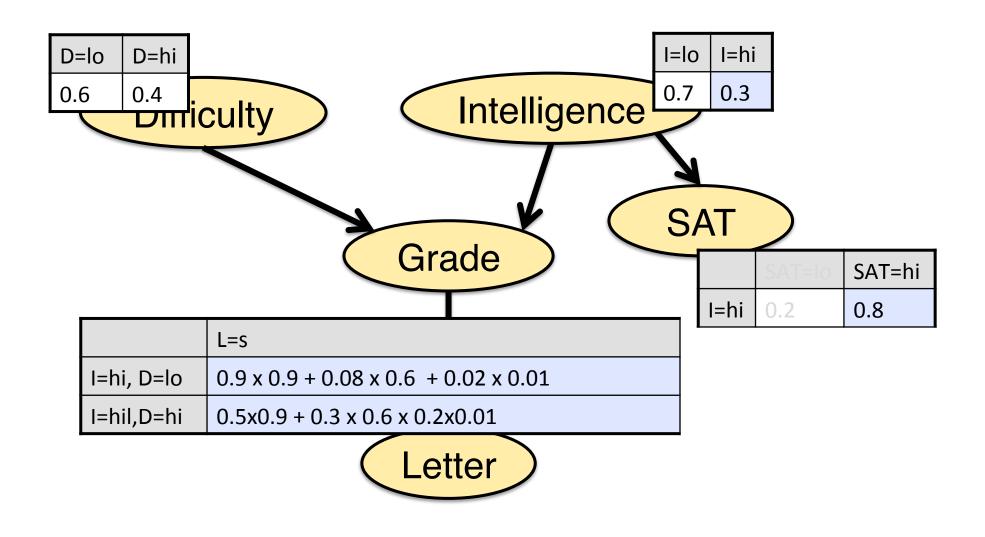


CS440/ECE448: Intro Al

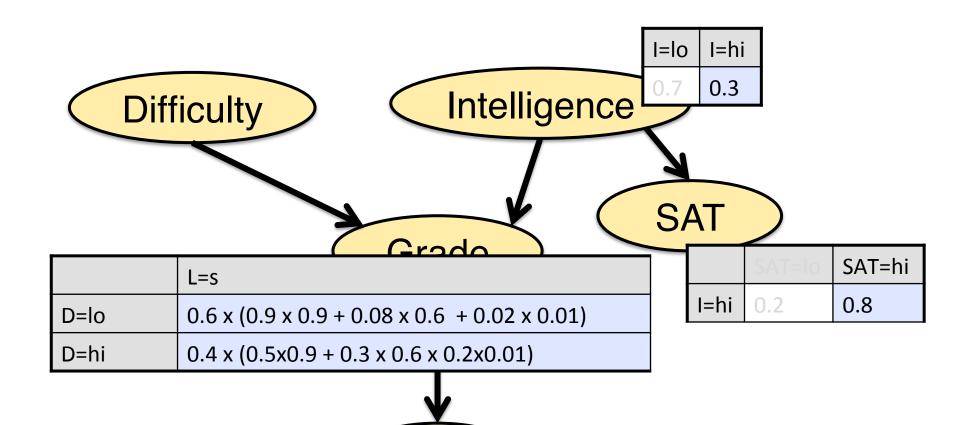


CS440/ECE448: Intro AI





CS440/ECE448: Intro Al



Letter

What's the probability that the student is intelligent if he got a good letter and a high SAT test?

Complexity of variable elimination

Polytree networks:

only one (undirected) path between each pair of nodes.

Complexity is linear in the size of the network (number of CPT entries)

Complexity of variable elimination

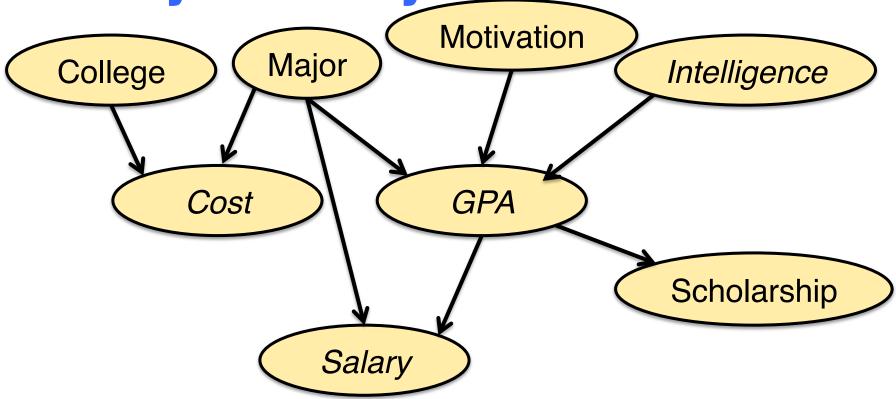
Multiply connected networks: multiple (undirected) paths between some pair of nodes.

Complexity is **exponential** in the size of the network (number of CPT entries)

(Similar to finding number of models in propositional logic)

Continuous variables

A hybrid Bayesian Network



The cost of your degree (tuition and living) depends on your choice of college and major. Your GPA depends on your motivation (high/normal/low), your IQ and your major.

Whether you get a scholarship depends on your GPA.

Your starting salary after you graduate depends on your major and your GPA. CS440/FCF448: Intro Al

13

Continuous variables

Continuous R.V.s (without parents)

e.g. Temperature (may not depend on anything)

Continuous R.V.s with discrete parents

e.g. Tip might depend on CustomerIsHappy

Continuous R.V.s with continuous parents

e.g. *SATscore* might depend on *IQ** *(it's easier to treat integers like reals)

Discrete R.V.s with continuous parents

e.g. CustomerIsHappy might depend on Temperature

R.V.s with mixed (discrete&continuous) parents

Continuous random variables

Many quantities of interest are numerical:

- intelligence: IQ score
- SAT: SAT score
- Temperature,...

We can quantize them:

- intelligence: low = IQ < 85; avg: 85 < IQ < 115</p>

Or we can deal with them directly

 if we are talking about a scale, it's often easier to treat them as real numbers

Continuous random variables

If X is a real-valued random variable, what is the probability that X=1.2, 1.21, 1.211, ...?

We can't assign probabilities to individual outcomes anymore.

But we can assign probabilities to the event that X falls into a specific interval:

What is the probability that 1.20 < X < 1.21?

Probability density functions

A probability density function P(X) (PDF) for a real-valued random variable X is a function such that

- $-P(x) \ge 0$ for all $-\infty \le x \le +\infty$ (*P* is non-negative)
- $-\int P(x)dx = 1$
- For any interval $A: P(x \in A) = \int_A P(x) dx$

The cumulative distribution function F(n) is the probability that $X \le n$: $F(n) = P(X \le n) = \int_{-\infty}^{n} P(x) dx$

Expectation (Mean)

The expectation E(X) of a real-valued random variable X with PDF P(X) is defined as $E(X) = \int x P(x) dx$

E(X) is also called the mean μ

The expectation E(f(X)) of a function of X with PDF P(X) is defined as:

$$E(X) = \int f(x)P(x)dx$$

Variance

The variance
$$Var(X) = \sigma^2$$
 is defined as $Var(X) = E[(X - \mu)^2]$

The standard deviation σ is the square root of the variance.

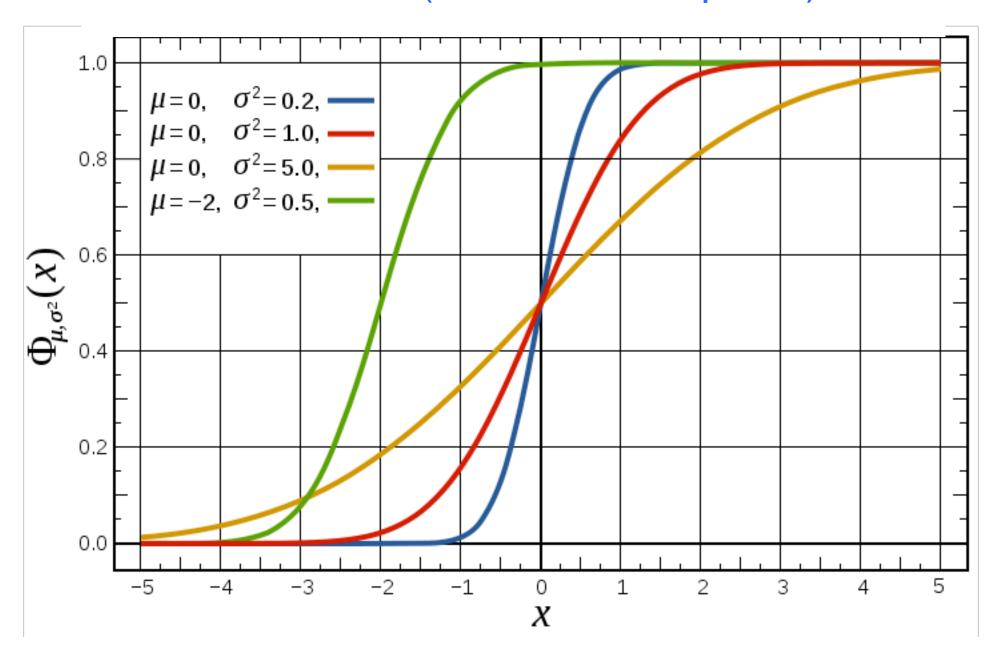
The normal (Gaussian) distribution

Gaussian (Normal) distribution with mean μ and variance σ^2

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{(2\sigma^2)}}$$

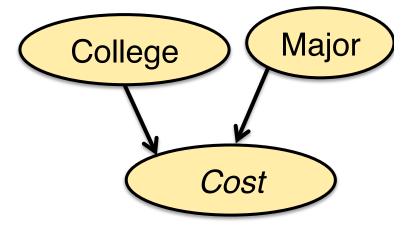
A few examples (from Wikipedia) $\mu = 0$, $\sigma^2 = 0.2$, — $\mu = 0$, $\sigma^2 = 1.0$, 8.0 $\mu = 0$, $\sigma^2 = 5.0$, — $\mu = -2$, $\sigma^2 = 0.5$, — $\phi_{\mu,\sigma^2}(x)$ 0.2 0.0 -2 0 Х

The CDFs (also from Wikipedia)



Continuous R.V. with discrete parents: a set of Gaussians

Each possible outcome of the set of discrete parents = one distribution



College Major Cost

U of I CS $N(\mu_{UofI,CS}, \sigma^2_{UofICS})$

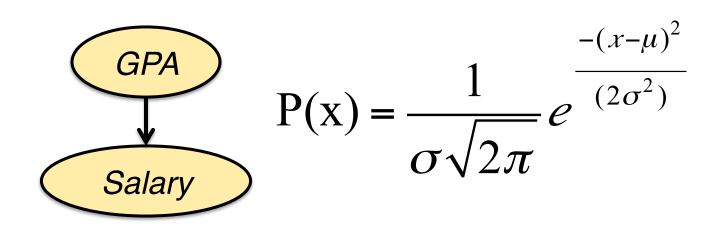
U of I English $N(\mu_{UofI,E}, \sigma^2_{UofIE})$

UChicago CS $N(\mu_{UC,CS}, \sigma^2_{UC,CS})$

Continuous R.V.s with continuous parents: linear Gaussians

Salary is a Gaussian whose mean depends (linearly) on *GPA*: $\mu_{Salary} = a \times GPA + b$ We assume a fixed variance σ^2 .

$$P(Salary \mid GPA) = N(a \times GPA + b, \sigma^2)$$



Discrete (binary) R.V.s with continuous parents

The probability of getting a scholarship depends on your GPA:

- If your GPA is very low, it is close to zero.
- If your GPA is very high, it is close to one (you'd hope).
- Inbetween, the probability varies smoothly.

We need a threshold function

- Probit: CDF of Standard Normal (Gaussian with mean 0 and variance 1)
- Logit: uses logistic function 1/(1+e-x)