CS440/ECE448: Intro to Artificial Intelligence

Lecture 13: Review for midterm

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Planning

Classical planning: assumptions

The environment is fully observable, deterministic, static, known and finite.

A plan is a linear sequence of actions;

Planning can be done off-line

Representations for planning: key questions

How do we represent states?

- What information do we need to know?
- What information can we (safely) ignore?

How do we represent actions?

- When can we perform an action?
- What changes when we perform an action?
- What stays the same?
- What level of detail do we care about?

Operators, actions and fluents

Operator: carry(x)

General knowledge of one kind of action: preconditions and effects

Action: carry(BlockA)

Ground instance of an operator

Fluent: on(BlockA, BlockB, s)

may be true in current state, but not after the action move(A,B,T) is performed.

Representations for operators

Operator name (and arity): move x from y to z move(x,y,z)

Preconditions: when can the action be performed $clear(x) \land clear(z) \land on(x,y)$

Effects: how does the world change?

$$\underbrace{clear(y) \land on(x,z)}_{new} \land \underbrace{clear(x) \land \neg clear(z) \land \neg on(x,y)}_{persist}$$

=> main differences between languages

Representations for states

We want to know what state the world is in:

- What are the current properties of the entities?
- What are the current relations between the entities?

Logic representation:

Each state is a conjunction of ground predicates:

```
Block(A) \land Block(B) \land Block(C) \land Table(T)
 \land On(A,B) \land On(B,T) \land On(C,T) \land Clear(A) \land Clear(C)
```

Representations for planning

Situation Calculus Strips

Specify fluents Specify fluents

Add-set Add-set

Persist-set Delete-set

By default fluents

are deleted

By default fluents persist

Planning algorithms

```
State space search (DFS, BFS, etc.)
```

Nodes = states; edges = actions;

Heuristics (make search more efficient)

Compute h() using relaxed version of the problem

Plan space search (refinement of partial plans)

Nodes = partial plans; edges: fix flaws in plan

SATplan (encode plan in propositional logic)

Solution = true variables in a model for the plan

Graphplan (reduce search space to planning graph)
Planning graph: levels = literals and actions

Planning as state space search

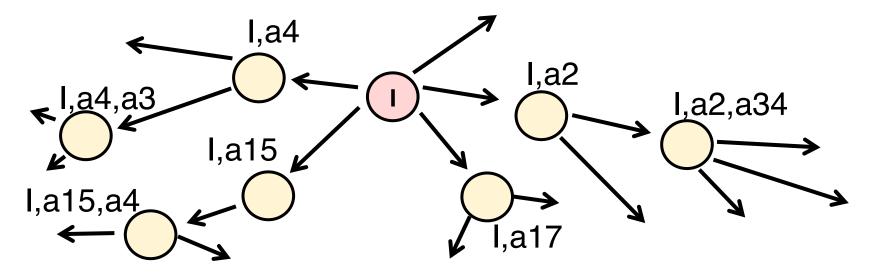
Search tree:

– Nodes: states

- Root: initial state

Edges: actions (ground instances of operators

- Solutions: paths from initial state to goal.



Searching plan-space

- 1. Start with the empty plan
 - = {start state, goal state}
- 2. Iteratively refine current plan to resolve flaws (refine = add new actions and constraints)
 - Flaw type 1: open goals (require more actions)
 - Flaw type 2: threats (require ordering constraints)
- 3. Solution = a plan without flaws

SATplan

Represent a plan of fixed length *n* as a ground formula in predicate logic. Translate this formula into propositional logic.

There is a solution if this formula is satisfiable. Plan = sequence of 'true' actions.

If there is no solution of length n, try n+1.

From plans to predicate logic

Fluents are ground literals: clear(B, t)

Actions are ground implications:

 $(preconditions^t \land action^t) \rightarrow effect^{t+1}$

```
Action move(A,B,C, 23)

(on(A,B, 23) \land clr(C, 23) \land move(A,B,C, 23))

\rightarrow (on(A,C, 24) \land clr(B, 24))
```

From plans to propositional logic

Fluents

```
clear(B, 23) = clear-B-23
```

Actions

```
((on(A,B, 23) \land clear(C,23) \land move(A,B,C, 23))

\rightarrow (on(A,C, 24) \land clear(B, 24))

((on-A-B-23 \land clear-C-23) \land move-A-B-C-23))

\rightarrow (on-A-C-24 \land clear-B-24)
```

Intelligent agents

Key concepts

Agents:

- Different kinds of agents
- The structure and components of agents

Describing and evaluating agents:

- Performance measures
- Task environments

Rationality:

– What makes an agent intelligent?

Agents

- 1. What is the task environment of:
 - a chess computer?
 - a Mars rover?
 - a spam detector?
- 2. What is the advantage of model-based agents over reflex-based agents?

Task environments

The task environment specifies the problem that the agent has to solve.

It is defined by:

- 1. the objective Performance measure
- 2. the external Environment
- 3. the agent's Actuators
- 4. the agent's Sensors

Simple reflex agents

Action depends *only* on current percept. Agent has no memory.

Last percept	Action	
[Clean]	Right	
[cat]	RUN!	

May choose actions stochastically to escape infinite loops.

Last percept	Action	
[Clean]	Right (p=0.8) Left(p=0.2)	

Model-based reflex agents

Agent has an **internal model** of the current state of the world. Examples: the agent's previous location; current locations of all objects it has seen;

Last percept	Last location	Action
[Clean]	Left of current	Right
[Clean]	Right of current	Left

Systematic search

Key concepts

Problem solving as search:

Solution = a finite sequence of actions

State graphs and search trees

Which one is bigger/better to search?

Systematic (blind) search algorithms

Breadth-first vs. depth-first; properties?

Systematic/blind search: assumptions

The environment is:

- observable
 (Agent perceives all it needs to know)
- known(Agent knows the effects of each action)
- deterministic
 (Each action always has the same outcome)

In such environments, the solution to any problem is a fixed sequence of actions.

The queuing function defines the search order

Depth-first search (LIFO)

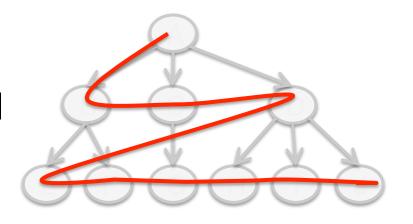
Expand deepest node first

```
QF(old, new):
   Append(new, old)
```

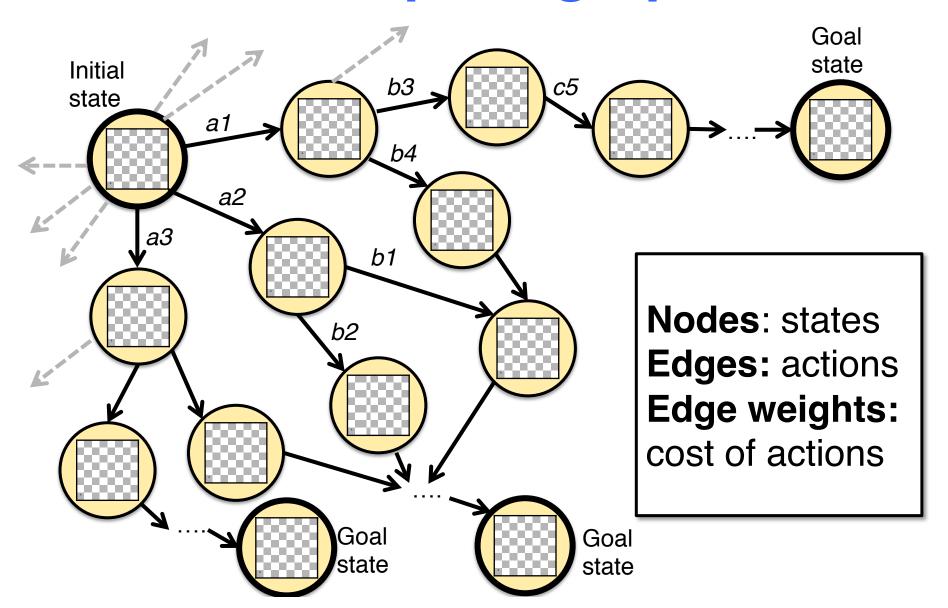
Breadth-first (FIFO)

Expand nodes level by level

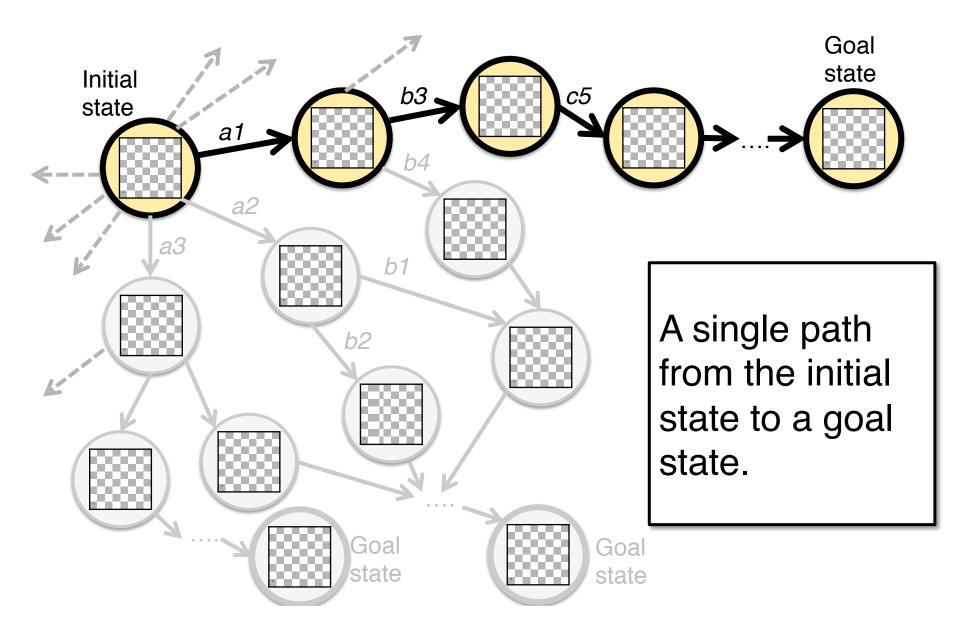
```
QF(old, new):
   Append(old, new);
```



State-space graph



Solution



Properties of search algorithms

A search algorithm is **complete** if it will find any goal whenever one exists.

A search algorithm is **optimal** if it will find the cheapest goal.

Time complexity: how long does it take to find a solution?

Space complexity: how much memory does it take to find a solution?

Informed (heuristic) search

Informed search: key questions/concepts

How can we find the *optimal* solution? We need to assign values to solutions

Values = cost.

We want to find the *cheapest* solution.

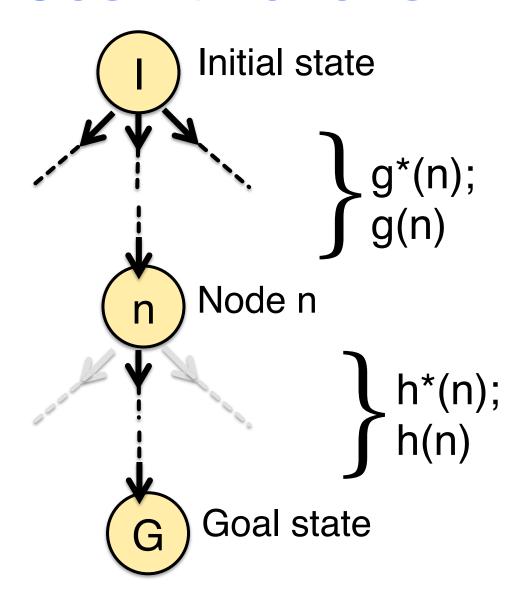
Heuristic search: priority queue

Heuristic search algorithms sort the nodes on the queue according to a cost function:

```
QF(a,b):
    sort(append(a,b), CostFunction)
```

The cost function is an estimate of the true cost. Nodes with the lowest estimated cost have the highest priority.

Cost functions



Heuristic search algorithms

	Uniform cost search	Greedy best- first search	A* search
Cost	g(n)	h(n)	f(n)
Optimal?	yes	no	if h(n) admissible
Complete?	with positive non-zero costs	graph- search: yes tree-search: no	with positive non-zero costs

Admissible heuristics

Task: Find the shortest path to X.

- **Heuristic 1:** h(n) = 1000.
- Heuristic 2: h(n) = 0.
- **Heuristic 3:** h(n) = length of line from n to X.

Admissible heuristic: never overestimate true cost.

Local search

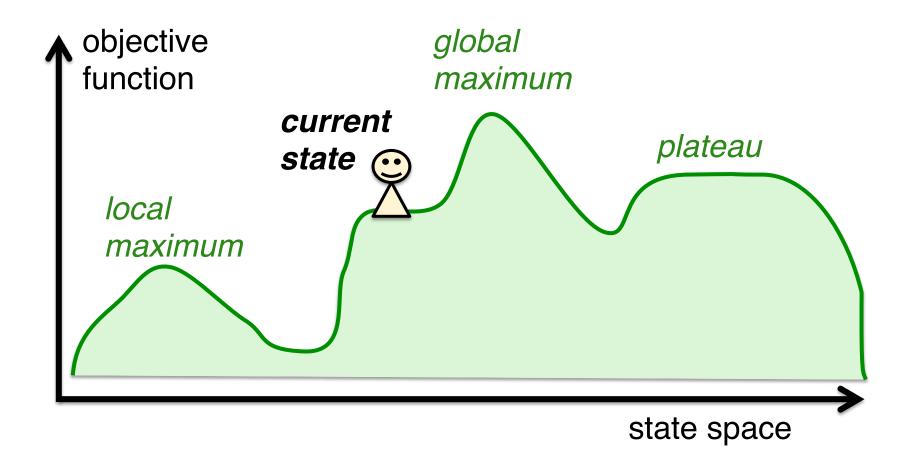
Local search

How can we find the goal when:

- we can't keep a queue?
 (because we don't have the memory)
- we don't want to keep a queue?
 (because we just need to find the goal state,)
- we can't enumerate the next actions?
 (because there's an infinite number)

Local search = consider only the current node and the next action

The state space landscape



Dealing with local maxima

Random restart hill-climbing:

k trials starting from random positions

k-best (beam) hill climbing:

Pursue k trials in parallel; only keep the k best successors at each time step

Simulated annealing:

Accept downhill moves with non-zero prob.

Constraint satisfaction problems

Constraint satisfaction problems are defined by...

a set of variables X:

```
{WA, NT, QLD, NSW, VA, SA, TA}
```

- a set of domains D_i (possible values for variable x_i):

```
D_{WA} = \{red, blue, green\}
```

a set of constraints C:

```
\{\langle (WA,NT), WA \neq NT \rangle, \langle (WA,QLD), WA \neq QLD \rangle, \ldots \}
scope relation
```

Unary constraints: Node consistency

A unary constraint:

Western Australia is blue. The final inspection takes 10 minutes

Expressed as constraint:

WA = blue; FI + 10 ≤ 5:00pm

Expressed as restriction on the domain:

 $D_{WA} = \{blue\}, D_{FI} = \{8:00am...4:50pm\}$

A single variable is node-consistent if all the values in its domain satisfy all its unary constraints.

Binary constraints: Arc consistency

A variable x_i is **arc-consistent** if and only if for *every* value $d_i \in D_i$ in its own domain and for every binary constraint $C(x_i, x_j)$, there is a value $d_j \in D_j$ in x_j 's domain such that C is satisfied.

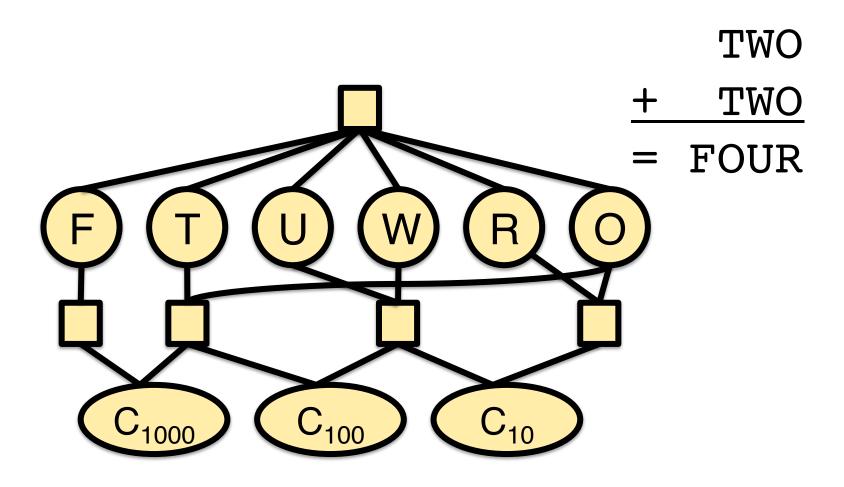
 $D_X = D_Y = \{0,1,2,3,4,5,6,7,8,9\},$ Constraint: C(X, Y): $Y = X^2$ **Arc-consistency** \rightarrow $D_X = \{0, 1, 2, 3\}, D_Y = \{0,1,4,9\}$

CS440/ECE448: Intro Al

Interactions of binary constraints: Path consistency

A pair of variables $\{X,Y\}$ is **path consistent** with respect to variable Z if and only if for every consistent $x \in D_X$ and $y \in D_X$ there is a $z \in D_Z$ that satisfies C(X=x,Z=z) and C(Y=y,Z=z)

Global (n-ary) constraints: Constraint Hypergraph



CS440/ECE448: Intro Al

Propositional logic

Propositional logic: key concepts

Syntax of propositional logic:

 propositional variables, connectives, wellformed formulas

Semantics of propositional logic:

- interpretations, models, truth tables

Inference with propositional logic:

model-checking, resolution

Syntax: the building blocks

```
Variables: \{p, q, r, ...\}
```

Constants: ⊤ (true), ⊥(false)

Well-formed formulas:

```
WFF → Atomic | Complex
Atomic → Constant | Variable
WFF' → Atomic | (Complex)

Complex → ¬ WFF' | WFF' ∧ WFF'

| WFF' ∨ WFF' | WFF' → WFF'
```

Semantics: truth values

The interpretation $[\![\alpha]\!]^{\nu}$ of a well-formed formula α under a model ν is a truth value:

$$\llbracket \alpha \rrbracket^{\nu} \in \{true, false\}.$$

A model (=valuation) v is a complete* assignment of truth values to variables:

$$v(p) = true \ v(q) = false, ...$$

*each variable is either true or false
With n variables, there are 2^n different models

Models of α ('M(α)'): set of models where α is true

Validity and satisfiability

```
\alpha is valid in a model m ('m \models \alpha') iff m \in M(\alpha)
= the model m satisfies \alpha
        (α is true in m)
\alpha is valid ('\models \alpha') iff \forall m: m \in M(\alpha)
(\alpha is true in all possible models. \alpha is a tautology.)
\alpha is satisfiable iff \exists m: m \in M(\alpha)
(\alpha is true in at least one model, M(\alpha) \neq \emptyset)
```

Entailment

Definition:

 α entails β (' $\alpha \models \beta$ ') iff $M(\alpha) \subseteq M(\beta)$

Entailment is monotonic:

If $\alpha \models \beta$, then $\alpha \land \gamma \models \beta$ for any γ

Proof: $M(\alpha \land \gamma) \subseteq M(\alpha) \subseteq M(\beta)$

We also write $\alpha, \gamma \models \beta$ or $\{\alpha, \gamma\} \models \beta$ for $\alpha \land \gamma \models \beta$

Inference in propositional logic

How do we know whether α is valid or satisfiable given KB?

Model checking: (semantic inference) Enumerate all models for KB and α .

Theorem proving: (syntactic inference) Use inference rules to derive α from KB.

Inference: soundness and completeness

A procedure P that derives α from KB... KB $\vdash_{P} \alpha$

...is **sound** if it only derives valid sentences: if $KB \vdash_{P} \alpha$, then $KB \models \alpha$ (soundness)

...is **complete** if it derives any valid sentence:

if $KB \models \alpha$, then $KB \vdash_{P} \alpha$ (completeness)

The resolution rule

Unit resolution:

$$p_1 \vee \dots \vee p_{i-1} \vee p_i \vee p_{i+1} \vee \dots \vee p_n \qquad \neg p_i$$

$$p_1 \vee ... \vee p_{i-1} \vee p_{i+1} \vee ... \vee p_n$$

Full resolution:

$$\begin{array}{lll} p_1 \, \textit{V} \dots \, \textit{V} \, p_i \, \textit{V} \, \dots \, \textit{V} \, p_n & & q_1 \, \textit{V} \dots \, \textit{V} \, \neg \, p_i \, \, \textit{V} \, \dots \, \textit{V} \, q_m \end{array}$$

$$\mathbf{p_1} \vee \dots \vee \mathbf{p_n} \vee \mathbf{q_1} \vee \dots \vee \mathbf{q_m}$$

Final step: factoring (remove any duplicate literals from the result $A \lor A \equiv A$)

A resolution algorithm

Goal: prove $\alpha \models \beta$ ' by showing that $\alpha \land \neg \beta$ is not satisfiable (*false*)

Observation:

Resolution derives a contradiction (*false*) if it derives the empty clause:

$$p_i \neg p_i$$

CS440/ECE448: Intro Al

First-order predicate logic

Richer models

Domain: a set of entities {ann, peter, ...,book1,...}

Entities can have properties.
A property defines a (sub)set of entities: $blue = \{book5, mug3, ...\}$

There may be **relations** between entities. An n-ary relation defines a set of n-ary tuples of entities: $belongsTo = \{ < book5, peter>, < mug3, ann>, ... \}$

A richer language

Terms: refer to entities

Variables, constants, functions,

Predicates: refer to properties of entities or relations between entities

Sentences (= propositions) can be true or false

The building blocks

```
A (finite) set of variables VAR:
       VAR = \{x, y, z, ...\}
A (finite) set of constants CONST:
       CONST = \{john, mary, tom, ...\}
For n=1...N:
 A (finite) set of n-place function symbols FUNC
       FUNC_1 = \{fatherOf, successor, ...\}
 A (finite) set of n-place predicate symbols PRED_n:
       PRED_1 = \{student, blue, ...\}
       PRED_2 = \{friend, sisterOf, ...\}
```

Clauses, literals, and CNF

Conjunctive normal form: a conjunction of clauses.

$$(\phi_1 \vee ... \vee \phi_n) \wedge ... \wedge (\phi_1^{\prime} \vee ... \vee \phi_m^{\prime})$$

Clause: a disjunction of an arbitrary number of positive or negative literals.

$$(\phi_1 \lor \neg \phi_2 \lor \phi_3 \lor \neg \phi_4)$$

Literal: a (negated) predicate and its arguments

```
likes(x, John')
```

¬likes(John', motherOf(Mary))

 \neg student(x)

Different kinds of clauses

Definite clause: exactly one positive literal

Facts: ψ

Implications: $\neg \phi_1 \lor ... \lor \neg \phi_n \lor \psi \equiv [(\phi_1 \land ... \land \phi_n) \rightarrow \psi]$

Horn clause: at most one positive literal.

All definite clauses, plus (resolution) queries: ¬ψ

Clauses: arbitrary number of positive literals All Horn clauses, plus any disjunction, e.g $\phi \lor \psi$

Model M=(D,I)

The **domain** *D* is a nonempty set of objects:

$$D = \{a1, b4, c8, ...\}$$

The interpretation function *I* maps:

- -each constant c to an element c^I of D: $John^I = aI$
- -each *n*-place function symbol f to an (total) *n*-ary function $f^I D^n \rightarrow D$: $father Of^I(a1) = b4$
- -each n-place predicate symbol p to an n-ary relation $p^I \subseteq D^{n:}$ $child^I = \{a1, c8\}$ $likes^I = \{\langle a1, b4 \rangle, \langle b4, a1 \rangle\}$

Interpretation of variables

A variable assignment v over a domain D is a (partial) function from variables to D.

The assignment v = [a21/x, b13/y] assigns object a21 to the variable x, and object b13 to variable y.

We recursively manipulate variable assignments when interpreting quantified formulas. Notation: v[b/z] is just like v, but it also maps z to b. We will make sure that v is undefined for z.

Inference in FOPL

Challenge:

How do we deal with quantifiers and variables?

Solution 1: Propositionalization

Ground all the variables.

Solution 2: Lifted inference

Convert to prenex NF, then skolemize existentially quantified variables, use unification for universally quantified variables.

Propositionalization

If we have a finite domain, we can use UI and EI to eliminate all variables.

```
KB: \forall x [(student(x) \land inClass(x)) \rightarrow sleep(x)] student(Mary) professor(Julia)
```

Propositionalized KB:

```
(student(Mary) \land inClass(Mary)) \longrightarrow sleep(Mary)
(student(Julia) \land inClass(Julia)) \longrightarrow sleep(Julia)
etc.
```

...this is not very efficient....

Prenex normal form

Every well-formed formula in FOL has an equivalent prenex normal form, in which all the quantifiers are at the front.

$$\forall x \exists y \exists z \forall w \phi(x,y,z,w)$$

 $\phi(x,y,z,w)$ (the 'matrix') does not contain any quantifiers.

CS440/ECE448: Intro Al

Skolemization: remove existentially quantified variables

Replace any existentially quantified variable $\exists x$ that is in the scope of universally quantified variables $\forall y_1...\forall y_n$ with a new function $F(y_1,...,y_n)$ (a **Skolem function**)

Replace any existentially quantified variable 3x that is not in the scope of any universally quantified variables with a new constant c (a **Skolem term**)

CS440/ECE448: Intro Al

Unification, MGU

A set of sentences $\varphi_{1,...}\varphi_{n}$ unify to σ if for all $i\neq j$: SUBST $(\sigma,\varphi_{i}) = \text{SUBST}(\sigma,\varphi_{i})$.

 σ is the most general unifier (MGU) of ϕ and ψ if it imposes the fewest constraints.

 $MGU(P(x,y,z), P(w,w,Fred)) = \sigma = \{x=w, y=w, z=Fred\}$ yields P(w,w,Fred)

Equivalently, $\sigma = \{x=u, y=u, w=u, z=Fred\}$ yields the alphabetic variant P(u,u,Fred)

Inference in FOL: using Modus ponens

$$\begin{array}{c} \phi \longrightarrow \psi \\ \hline \phi \\ \hline \psi \end{array} (MP)$$

Forward: I know that φ implies ψ . I also know φ . Hence, I can conclude that ψ is true as well.

Backward: I want to know whether ψ is true. I know that ϕ implies ψ . Hence, if I can prove ϕ , I can conclude that ψ is true as well.