CS440/ECE448: Intro to Artificial Intelligence

Lecture 10: Even more on predicate logic

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Inference in predicate logic

All men are mortal. Socrates is a man. Socrates is mortal.

We need a new version of modus ponens:

$$\forall x \ P(x) \longrightarrow Q(x)$$
$$P(s')$$

How do we deal with quantifiers and variables?

Solution 1: Propositionalization Ground all the variables.

Solution 2: Lifted inference

Ground (skolemize) all the existentially quantified variables. All remaining variables are universally quantified.

Use unification.

Prerequisites for lifted inference: Skolemization and Unification

Skolemization: remove existentially quantified variables

Replace any existentially quantified variable $\exists x$ that is in the scope of universally quantified variables $\forall y_1...\forall y_n$ with a new function $F(y_1,...,y_n)$ (a **Skolem function**)

Replace any existentially quantified variable 3x that is not in the scope of any universally quantified variables with a new constant c (a **Skolem term**)

CS440/ECE448: Intro Al

The effect of Skolemization

 $\forall x \ \forall y \ \exists w \ \forall z \ Q(x, y, w, z, G(w, x))$

is equivalent to

 $\forall x \forall y \forall z Q(x, y, P(x, y), z, G(P(x, y), x))$

where P is the Skolem function for w.

NB: the Skolem function is a function, so this is not decidable anymore.

Universal quantifiers: Modus ponens

With propositionalization:

$$\frac{\forall x \text{ human}(x) \rightarrow \text{mortal}(x)}{\text{human}(s')} \xrightarrow{\text{(UI)}} \text{human}(s') \xrightarrow{\text{mortal}(s')} \text{(MP)}$$

How can we match human(s') and $\forall x human(x) \rightarrow mortal(x)$ directly?

Substitutions

A substitution θ is a set of pairings of variables v_i with terms t_i :

$$\theta = \{v_1/t_1, v_2/t_2, v_3/t_3, ..., v_n/t_n\}$$

- Each variable v_i is distinct
- t_i can be any term (variable, constant, function), as long as it does not contain v_i directly or indirectly

NB: the order of variables in θ doesn't matter $\{x/y, y/f(a)\} = \{y/f(a), x/y\} = \{x/f(a), y/f(a)\}$

Unification

Two sentences φ and ψ unify to σ

(UNIFY(
$$\varphi$$
, ψ) = σ)

if σ is a substitution such that

SUBST
$$(\sigma, \varphi)$$
 = SUBST (σ, ψ) .

Example:

UNIFY(like(x, M'), like(C',y)) = $\{x/C', y/M'\}$

Unification

A set of sentences $\varphi_1, ..., \varphi_n$ unify to σ if for all $i \neq j$: SUBST $(\sigma, \varphi_i) = \text{SUBST}(\sigma, \varphi_j)$.

 σ is the unifier of $\phi_{1,}...\phi_{n}$ Subst(σ , ϕ_{i}) is a unification instance.

Standardizing apart

Unification is not well-behaved if ϕ and ψ contain the same variable:

UNIFY(like(x, M'), like(C',x)): fail.

We need to *standardize* φ and ψ *apart* (rename this variable in one term):

UNIFY(like(x, M'), like(C',y)) = $\{x/C', y/M'\}$ to yield like(C',M')

Do these unify?

(Single lower case letters are variables)

UNIFY(P(x,y,z), P(w, w, Fred))

 $\sigma = \{x=Fred, y=Fred, z=Fred, w=Fred\}$

Equivalently: $\sigma' = \{x=Fred, w=y, z=Fred, y=x\}$

Both yield P(Fred,Fred,Fred)

Are there others?

UNIFY(P(x,y,z), P(w, w, Fred))

 $\sigma = \{x=Mary, y=Mary, z=Fred, w=Mary\}$

Equivalently: $\sigma' = \{x=Mary, w=y, z=Fred, y=x\}$

Both yield P(Mary, Mary, Fred)

Most General Unifier (MGU)

 σ is the most general unifier (MGU) of ϕ and ψ if it imposes the fewest constraints.

The MGU of ϕ and ψ is unique. (modulo alphabetic variants, i.e. different variable names)

Applying the MGU to an expression yields a most general unification instance.

We often define UNIFY(φ , ψ) to return MGU(φ , ψ)

What is the MGU?

MGU(P(x,y,z), P(w,w,Fred))

 $\sigma = \{x=w, y=w, z=Fred\}$ yields P(w,w,Fred)

Equivalently, $\sigma = \{x=u, y=u, w=u, z=Fred\}$ yields the alphabetic variant P(u,u,Fred)

What is the MGU?

```
MGU( m(Ann, x, Bob), m(Ann, x, Bob) ):
      m(Ann, x, Bob)
MGU( m(Ann, x, Bob), m(y, x, Chuck) ):
       fail.
MGU( m(Ann, x, Bob), m(y, x, Father-of(Chuck) ):
      fail.
MGU( p(w, w, Fred) , p(x, y, y) ):
      p(Fred, Fred, Fred)
MGU( q(r, r), q(x, F(x))):
      fail
MGU( r(g(x,Bob),y,y), r(z,g(Fred,w),z) ):
      r(g(x,Bob), g(Fred,w), g(Fred(w)))
```

Lifted inference: Generalized Modus Ponens

If $p_1'...p_n'$, $p_1...p_n$ are atomic sentences with universally quantified variables, and there is a substitution θ such that $SUBST(\theta, p_i') = SUBST(\theta, p_i)$

$$\frac{p_1' \dots p_n'}{SUBST(\theta, q)} \xrightarrow{Q} (GMP)$$

Another way to look at GMP:

 θ makes p_1 ' $\wedge \dots \wedge p_n$ ' and $p_1 \wedge \dots \wedge p_n$ equal:

SUBST
$$(\theta, p_1' \wedge ... \wedge p_n')$$
 = SUBST $(\theta, p_1 \wedge ... \wedge p_n)$

With a slight abuse of notation....

Knowledge base:

A person that sells drugs is a criminal.

```
\forall x \forall y [s(x,y) \land p(x) \land d(y) \longrightarrow c(x)]
```

Socrates is a person: p(s')

Socrates sells anything: ∀z s(s',z)

Cannabis is a drug: d(c')

Query:

Is Socrates a criminal? c(s')

```
\frac{\forall x \forall y [s(x,y) \land p(x) \land d(y) \rightarrow c(x)] \quad p(s') \quad d(c') \quad \forall z s(s',z)}{\text{GMP}}
\frac{\text{SUBST}(\{x/s', y/c', z/c'\}, c(x))}{\equiv c(s')}
\frac{\text{SUBST}(\{x/s', y/c', z/c'\}, \forall x \forall y [s(x,y) \land p(x) \land d(y) \rightarrow c(x)])}{\equiv s(s',c') \land p(s') \land d(t') \rightarrow c(s')}
```

This is a **lifted** version of modus ponens: it raises modus ponens from ground propositional logic to first-order logic.

Lifting is more efficient than propositionalization: only necessary substitutions are made.

Inference with GMP: Forward chaining for definite clauses

First order definite clauses

Definite clauses have exactly one positive literal.

Implications:

$$[p_1(x_1,...,x_n) \land ... \land p_m(x_1,...,x_n)] \rightarrow q(x_1,...,x_n)$$
 premise consequent
$$\equiv \neg [p_1(x_1,...,x_n) \land ... \land p_m(x_1,...,x_n)] \lor q(x_1,...,x_n)$$

$$\equiv \neg p_1(x_1,...,x_n) \lor ... \lor \neg p_m(x_1,...,x_n) \lor q(x_1,...,x_n)$$

Facts: $q(x_1,...,x_n)$.

Generalized Modus Ponens in definite clause form

Given $(p_1 \land ... \land p_n) \rightarrow q$ and p_1 ', ..., p_n ' with UNIFY $(p_1 \land ... \land p_n, p_1$ ' $\land ... \land p_n$ ') = θ , prove q.

As def. clause:
$$(p_1 \land ... \land p_n) \rightarrow q \equiv \neg (p_1 \land ... \land p_n) \lor q$$

$$\equiv \neg p_1 \lor ... \lor \neg p_n \lor q$$

$$\frac{p_1' \dots p_n'}{} \frac{\neg p_1 \vee \dots \vee \neg p_n \vee q}{} (MP)$$

SUBST (θ, q)

1. Americans who sell weapons to enemies are criminals

$$\forall x \forall y \forall z [(a(x) \land w(y) \land e(z) \land sell(x,y,z)) \rightarrow c(x)]$$

2. Nono has some weapons.

$$\exists x[owns(N', x) \land w(x)].$$

3. Its weapons were sold by West.

$$\forall x [(owns(N', x) \land w(x)) \rightarrow sell(W', N',x)].$$

4. West is an American.a(W')b. Nono is an enemy e(N')

Query: is West a criminal? c(W')

In definite clause form

```
1. \forall x \forall y \forall z [(a(x) \land w(y) \land e(z) \land sell(x,y,z)) \rightarrow c(x)]
\neg a(x) \lor \neg w(y) \lor \neg e(z) \lor \neg sell(x,y,z) \lor c(x)
2. \exists x [owns(N', x) \land w(x)].
2a) owns(N', M') 2b) w(M')
3. \forall x [(owns(N', x) \land w(x)) \rightarrow sell(W', N', x)].
\neg owns(N', x) \lor \neg w(x) \lor sell(W', N', x).
4. a(W') a(W')
5. e(N') e(N')
```

Forward chaining: apply GMP, starting from premises

Yes, West is a criminal.

CS440/ECE448: Intro Al

Inference with definite clauses: backward chaining

Two ways to use modus ponens

$$\begin{array}{c} \phi \longrightarrow \psi \\ \hline \phi \\ \hline \psi \end{array} (MP)$$

Forward: I know that φ implies ψ . I also know φ . Hence, I can conclude that ψ is true as well.

Backward: I want to know whether ψ is true. I know that ϕ implies ψ . Hence, if I can prove ϕ , I can conclude that ψ is true as well.

Backward chaining

Goal: prove that the literal q' is true.

- 1. Find an implication clause $\neg p_1 \lor ... \lor \neg p_n \lor q$ such that goal q' unifies with consequent q. UNIFY(q', q) = θ '
- 2. Apply θ ' to $\neg p_1 \lor ... \lor \neg p_n \lor q$. SUBST $(\theta', \neg p_1 \lor ... \lor \neg p_n \lor q) = \neg p''_1 \lor ... \lor \neg p''_n \lor q''$
- 3. Find a unifier θ " that allows you to prove that each literal p"; is true. (Recursion!)

findImplications(goal, θ) returns a list of *implications* whose consequent unifies with goal, and the corresponding unifier θ '

```
backwardChain(literal goal, unifier \theta)
   goal' = SUBST(goal, \theta)
    foreach (clause implication, unifier \theta')
        in findImplications(goal, \theta):
        foreach p_i in implication. PREMISES:
            (boolean retval, unifier \theta_i) =
                backwardChain(p_i \theta')
            if retval == false: goto next implication;
            \theta' = \theta
        if retval: return (true, \theta');
    return (false, \theta);
```

Logic programming with PROLOG

Horn clauses: at most one positive literal. path(X,Z):- path(X,Y), link(Y,Z). consequent:- premise1, premise2.

Inference: uses backward chaining Database semantics:

- Each constant refers to a unique object (no two names for the same object)
- Domain closure: domain consists only of those objects for which we have a name.
- Closed world assumption: if we don't know that P is true, we assume it's false.

Problem with backward chaining

Backward chaining is depth-first search. It can go down infinite branches of the search tree.

```
This is fine (Prolog will try base case first): path(X,Z) := link(X,Z). path(X,Z) := path(X,Y), link(Y,Z). This loops (Prolog will never get to the base case): path(X,Z) := path(X,Y), link(Y,Z). path(X,Z) := link(X,Z).
```

CS440/ECE448: Intro Al

Inference in predicate logic: Resolution

Conjunctive normal form

CNF (in general): arbitrary number of positive literals. Again, convert to prenex NF, skolemize and drop universal quantifiers.

The CNF of φ is inferentially equivalent to φ : $CNF(\varphi)$ is unsatisfiable iff φ is unsatisfiable.

Proof strategy: by contradiction (aka refutation). To prove $\varphi \models \psi$, show $\varphi \land \neg \psi$ is unsatisfiable.

Inference rule: resolution

Translation to CNF

- 1. Eliminate implications: $(\phi \rightarrow \psi) \equiv (\neg \phi \lor \psi)$
- 2. Standardize variables apart
- 3. Translate to prenex NF: move quantifiers outwards (across negation, connectives)
- 4. Move ¬ negation inside connectives

$$\neg(\phi \land \psi) \equiv (\neg\phi \lor \neg\psi) \ \neg(\phi \lor \psi) \equiv (\neg\phi \land \neg\psi)$$

- 5. Skolemize ∃x
- 6. Drop universal quantifiers ∀
- 7. Distribute v over A

Resolution

A lifted version of propositional resolution:

If
$$p_i$$
 unifies with $\neg q_j$: UNIFY $(p_i, \neg q_j) = \theta$

$$\frac{p_1 \vee ... \vee p_i \vee ... \vee p_n}{\text{SUBST}(\theta, p_1 \vee ... \vee p_{i-1} \vee p_{i+1} \vee ... \vee p_n \vee q_1 \vee ... \vee q_j \vee ... \vee q_m)}$$

Resolution is complete for FOL. (again, we assume **factoring**: no duplicate literals replace $... \lor p \lor ... \lor p \lor ...$ with $... \lor p \lor ...$)

Why UNIFY $(p_i, \neg q_j)$ and not UNIFY (p_i, q_i) ?

Propositional resolution: $q_i \equiv \neg p_i$

$$p_1 \vee ... \vee p_i \vee ... \vee p_n \qquad q_1 \vee ... \vee \neg p_i \vee ... \vee q_m$$

$$p_1 \lor \dots \lor p_{i-1} \lor p_{i+1} \lor \dots \lor p_n \lor q_1 \lor \dots \lor q_{j-1} \lor q_{j+1} \lor \dots \lor q_m$$

Long answer: We know that $UNIFY(p, \neg q) = \theta$.

Apply the unifier θ to p and to q:

SUBST
$$(\theta, p) = p'$$
 SUBST $(\theta, q) = q'$

How do p' and q' look like?

Answer: $q' \equiv \neg p'$

Short answer: Unify $(p, \neg p) = \text{Fail}$.

Today's key concepts

Unification:

to deal with universal variables

Lifted inference:

Generalized modus ponens forward chaining backward chaining first order resolution