CS440/ECE448: Intro to Artificial Intelligence

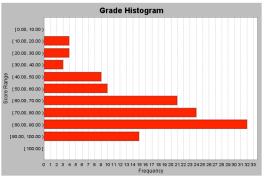
Lecture 9: More on predicate logic

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Review: syntax of predicate logic

Quick upgrade on quizzes



The building blocks

A (finite) set of variables VAR: $VAR = \{x, y, z, ...\}$ A (finite) set of constants CONST: $CONST = \{john, mary, tom, ...\}$ For n=1...N:

A (finite) set of *n*-place **function** symbols FUNC $FUNC_{I} = \{fatherOf, successor, ...\}$ A (finite) set of *n*-place **predicate** symbols $PRED_{n}$: $PRED_{1} = \{student, blue, ...\}$ $PRED_{2} = \{friend, sisterOf, ...\}$

Putting everything together

Terms: constants (john); variables (x); n-ary function symbols applied to n terms (father Of(x))

- Ground terms contain no variables

Formulas: n-ary predicate symbols applied to n terms (likes(x,y)); negated formulas ($\neg fatherOf(x)$); conjunctions, disjunctions or implications of two formulas; quantified formulas

- Ground formulas (= sentences; propositions) contain no free variables
- Open formulas contain at least one free variable

CS440/ECE448: Intro AI

5

Semantics of predicate logic

Model M=(D,I)

The **domain** D is a nonempty set of objects: $D = \{a1, b4, c8, ...\}$

The interpretation function *I* maps:

- -each constant c to an element c^I of D: $John^I = aI$
- -each *n*-place function symbol f to an (total) *n*-ary function $f^I D^n \rightarrow D$: father $Of^I(aI) = b4$
- -each *n*-place predicate symbol p to an n-ary relation $p^I \subseteq D^{n:}$ child^I ={a1,c8} likes^I ={a1,b4}, a1>}

Interpretation of variables

A variable assignment v over a domain D is a (partial) function from variables to D.

The assignment v = [a21/x, b13/y] assigns object a21 to the variable x, and object b13 to variable y.

We recursively manipulate variable assignments when interpreting quantified formulas. Notation: v[b/z] is just like v, but it also maps z to b. We will make sure that v is undefined for z.

7

8

Interpretation of terms

Variables: $[x]^{M,g} = g(x)$

defined by the variable assignment

Constants: $[\![c]\!]^{M,g} = c^I$

defined by the interpretation function

Functions: defined by the interpretation function and recursion on the arguments

$$[f(t_1,....t_n)]^{M,g} = f^{I}([t_1]^{M,g},...,[t_n]^{M,g})$$

Interpretation of formulas

Atomic formulas:

$$\llbracket P(t_1,...t_n) \rrbracket^{M,g} = true \text{ iff } \langle \llbracket t_1 \rrbracket^{M,g},... \llbracket t_n \rrbracket^{M,g} \rangle \in P^I$$

Complex formulas (connectives):

CS440/ECE448: Intro Al 10

Interpretation of formulas: quantifiers

9

11

Universal quantifier:

$$\llbracket \forall x \ \varphi \ \rrbracket^{M,g} = true \ \text{iff} \ \llbracket \varphi \rrbracket^{M,g[u/x]} = true \ \text{for all } u \in D$$

Existential quantifier:

$$\llbracket \forall x \ \varphi \ \rrbracket^{M,g} = true \ \text{iff} \ \llbracket \varphi \rrbracket^{M,g[u/x]} = true$$
 for at least **one** $u \in D$

Satisfaction and entailment

 φ is satisfied in M ($M \models \varphi$) iff $\llbracket \varphi \rrbracket^{M,[]} = true$

 φ is valid ($\models \varphi$) *iff* φ is satisfied in any model.

 φ entails ψ *iff* $\varphi \rightarrow \psi$ is valid.

NB: We cannot interpret open formulas

(i.e. containing free variables)

Using predicate logic

"Birds fly" vs "Some birds fly"

Birds fly:

 $\forall x [Bird(x) \Rightarrow Flies(x)]$ $\equiv \neg \exists x [Bird(x) \land \neg Flies(x)]$

Some birds fly:

 $\exists x [Bird(x) \land Flies(x)]$

From English to predicate logic

Birds fly.

Some birds fly.

There are three people in SC1404.

SC1404 is empty.

There are exactly three people in SC1404.

There are three people in SC1404 SC1404 is empty.

There are three people in 1404:

 $\exists x \exists y \exists z [person(x) \land in(x, SC1404) \land person(y) \land in(x, SC1404) \land person(z) \land in(x, SC1404) \land x \neq y \land x \neq z \land y \neq z]$

SC1404 is empty.

 $\neg \exists x [person(x) \land in(x, SC1404)]$

There are *exactly* three people in SC1404

 $\exists x \exists y \exists z [person(x) \land in(x, SC1404)$ $\land person(y) \land in(x, SC1404)$ $\land person(z) \land in(x, SC1404)$ $\land x \neq y \land x \neq z \land y \neq z$ $\land \forall w [(person(w) \land in(w, SC1404))$ $\rightarrow (w = x \lor w = y \lor w = z)]]$

What about....

"Most birds fly."

This cannot be expressed in FOL: $| bird^I \cap fly^I | > 0.5 | bird^I |$

CS440/ECE448: Intro Al 17 CS440/ECE448: Intro Al 18

Inference in predicate logic

Inference in predicate logic

All men are mortal. Socrates is a man. Socrates is mortal.

We need a new version of modus ponens:

$$\frac{\forall x \ P(x) \longrightarrow Q(x)}{P(s')}$$

$$\frac{Q(s')}{Q(s')}$$

FOL is semi-decidable

Can we prove whether $A \models B$?

Case 1: A does entail B.

Any sound & complete inference procedure will terminate (and confirm that A ⊨ B)

Case 2: A does not entail B.

No inference procedure is guaranteed to terminate.

Inference in predicate logic: propositionalization

How do we deal with quantifiers and variables?

Solution 1: **Propositionalization**

Ground all the variables.

Solution 2: Lifted inference

Ground (skolemize) all the existentially quantified variables. All remaining variables are universally quantified.

Use unification.

CS440/ECE448: Intro Al

22

Grounding variables

 $\theta = \{x_1/c_1, ...x_n/c_n\}$ is a list of substitutions: variable x_i is replaced by ground term c_i

The function $SUBST(\theta, \psi)$ applies the substitutions in θ to the free variables in formula ψ and returns the result.

SUBST($\{x/a, y/b\}$, friend($x,y\}$) = friend(a,b)

CS440/ECE448: Intro Al

Substitutions

A substitution θ is a set of pairings of variables v_i with terms t_i :

$$\theta = \{v_1/t_1, v_2/t_2, v_3/t_3, ..., v_n/t_n\}$$

- Each variable v_i is distinct
- t_i can be any term (variable, constant, function), as long as it does not contain v_i directly or indirectly

NB: the order of variables in θ doesn't matter $\{x/y, y/f(a)\} = \{y/f(a), x/y\} = \{x/f(a), y/f(a)\}$

Are these acceptable substitutions?

Universal instantiation

We can replace a universally quantified variable with *any* ground term:

$$\frac{\forall x \ \psi(x)}{\text{Subst}(\{x/a\}, \psi)}(\text{UI})$$

Hence:
$$\forall x \ (man(x) \rightarrow mortal(x))$$

 $\underbrace{SUBST(\{x/s'\}, man(x) \rightarrow mortal(x))}_{= man(s') \rightarrow mortal(s')}$

Existential instantiation

We can replace a existentially quantified variable with a *new* ground term:

$$\frac{\exists x \ \psi(x)}{\text{SUBST}(\{x/t\}, \ \psi)} \text{ (EI)}$$

$$t \text{ doesn't appear in } \psi \text{ or in any other formula in our KB}$$

Hence:
$$\frac{\exists x \ man(x)}{man(c')}$$
 (EI)

Propositionalization

If we have a finite domain, we can use UI and EI to eliminate all variables.

KB: $\forall x [(student(x) \land inClass(x)) \rightarrow sleep(x)]$ student(Mary) professor(Julia)

Propositionalized KB:

 $(student(Mary) \land inClass(Mary)) \rightarrow sleep(Mary)$ $(student(Julia) \land inClass(Julia)) \rightarrow sleep(Julia)$ etc.

...this is not very efficient....

CS440/ECE448: Intro Al

29

Direct (lifted) inference in predicate logic: will it work?

Propositionalization

If we can reduce $A \models B$ to propositional resolution, $A \models B$ is decidable.

We cannot reduce A ⊨ B to propositional resolution if they contain functions or equality.

CS440/ECE448: Intro Al 30

Some fragments of FOL are decidable

Can we prove whether $A \models B$?

If both A and B belong to the same decidable fragment of FOL, any sound and complete inference procedure will terminate (and tell us whether A ⊨ B)

CS440/ECE448: Intro AI

32

Which fragment of FOL does φ belong to?

Every WFF in FOL can be translated to prenex conjunctive normal form.

Prenex form:

All quantifiers are at the front of the formula

Conjunctive Normal Form:

A conjunction of clauses.

Depending on the form of the clauses in the CNF of $A, B, A \models B$ may be decidable.

CS440/ECE448: Intro Al

33

35

We can move quantifiers outside of connectives

We already saw:

$$\forall x P(x) \wedge \forall y Q(y) \equiv \forall x \forall y \left[P(x) \wedge Q(y) \right]$$

$$\forall x P(x) \lor \forall y Q(y) \equiv \forall x \forall y [P(x) \lor Q(y)]$$

$$\exists x P(x) \land \exists y Q(y) \equiv \exists x \exists y [P(x) \land Q(y)]$$

$$\exists x P(x) \lor \exists y Q(y) \equiv \exists x \exists y [P(x) \lor Q(y)]$$

Prenex normal form

Every well-formed formula in FOL has an equivalent **prenex normal form**, in which all the quantifiers are at the front.

$$\forall x \exists y \exists z \forall w \phi(x,y,z,w)$$

 $\phi(x,y,z,w)$ (the 'matrix') does not contain any quantifiers.

CS440/ECE448: Intro Al 34

Equivalences: alphabetic variants

We can move quantifiers to the front, e.g.:

$$\exists x P(x) \land \exists y Q(y) \equiv \exists x \exists y [P(x) \land Q(y)]$$

$$\exists x P(x) \land \exists x Q(x) \neq \exists x [P(x) \land Q(y)]$$

To avoid clashes, we first rename bound variables to any other new (unbound) variable:

$$\exists x P(x) \land \exists x Q(x) \equiv \exists x P(x) \land \exists y Q(y)$$

 $\exists y Q(y)$ is an alphabetic variant of $\exists x Q(x)$

CS440/ECE448: Intro Al 36

We can move quantifiers outside of connectives

If x is not free in φ :

$$\varphi \land \forall x \ \psi(x) \equiv \forall x [\varphi \land \psi(x)]$$
$$\varphi \land \exists x \ \psi(x) \equiv \exists x [\varphi \land \psi(x)]$$

$$\varphi \lor \forall x \ \psi(x) \equiv \forall x [\varphi \lor \psi(x)]$$

 $\varphi \lor \exists x \ \psi(x) \equiv \exists x [\varphi \lor \psi(x)]$

$$\varphi \to \forall x \ \psi(x) \equiv \forall x [\varphi \to \psi(x)]$$
$$\varphi \to \exists x \ \psi(x) \equiv \exists x [\varphi \to \psi(x)]$$

CS440/ECE448: Intro Al

37

We can move quantifiers outside of negation

Not all x are $\psi = (At least)$ one x is not ψ

$$\neg \left[\forall x \, \psi(x) \right] \equiv \exists x [\neg \, \psi(x)]$$

No x is $\psi = All x$ are not ψ

$$\neg [\exists x \psi(x)] \equiv \forall x [\neg \psi(x)]$$

CS440/ECE448: Intro Al 38

Gold medal winners have not played against anybody who beat all other players.

$$\forall x[g(x) \rightarrow \neg \exists y[p(y,x) \land \forall z b(y,z)]]$$

```
\equiv \, \forall \, x [g(x) \mathop{\rightarrow} \forall \, y \mathop{\neg} [p(y,\!x) \wedge \forall \, z \; b(y,\!z)]]
\equiv \forall x[g(x) \rightarrow \forall y[\neg p(y,x) \lor \neg \forall z b(y,z)]]
\equiv \forall x[g(x) \rightarrow \forall y[\neg p(y,x) \lor \exists z \neg b(y,z)]]
\equiv \forall x \forall y [g(x) \rightarrow [\neg p(y,x) \lor \exists z \neg b(y,z)]]
\equiv \forall x \forall y [g(x) \rightarrow \exists z [\neg p(y,x) \lor \neg b(y,z)]]
```

$$\equiv \forall x \forall y \exists z [g(x) \rightarrow [\neg p(y,x) \lor \neg b(y,z)]]$$

 $\equiv \forall x \forall y \exists z [g(x) \rightarrow [p(y,x) \rightarrow \neg b(y,z)]]$

= Everybody that a gold medal winner played against has not beaten (=has drawn or lost against) somebody.

Normal forms for FOL

Conjunctive normal form: a conjunction of clauses.

$$(\varphi_1 \vee ... \vee \varphi_n) \wedge ... \wedge (\varphi'_1 \vee ... \vee \varphi'_m)$$

Clause: a disjunction of an arbitrary number of positive or negative literals.

$$(\phi_1 \lor \neg \phi_2 \lor \phi_3 \lor \neg \phi_4)$$

Literal: a (negated) predicate and its arguments likes(x, John')

¬likes(John', motherOf(Mary))

 \neg student(x)

Fragments of FOL

Definite clause: exactly one positive literal

Facts: ψ

Implications: $\neg \phi_1 \lor ... \lor \neg \phi_n \lor \psi \equiv [(\phi_1 \land ... \land \phi_n) \rightarrow \psi]$

Horn clause: at most one positive literal.

All definite clauses, plus (resolution) queries: ¬w

Clauses: arbitrary number of positive literals All Horn clauses, plus any disjunction, e.g $\phi \lor \psi$

CS440/ECE448: Intro Al 41

Prerequisites for lifted inference: Skolemization and Unification

Inference algorithms for FOL

Forward chaining:

Complete for definite clauses.

Resolution:

Refutation-complete for CNF. (Resolution will derive a contradiction if a set of sentences is not satsifiable).

The resolution of two Horn clauses yields another Horn clause.

CS440/ECE448: Intro Al 42

Prerequisites for lifted inference

We cannot interpret open formulas, but we need to deal with quantified variables.

Existentially quantified variables: replace by ground terms (Skolemization)

Universally quantified variables: match with other universally quantified variables or ground terms (unification)

Existentially quantified variables

If $\forall x \exists y R(x,y)$ is valid in our model, then:

For *any* way of instantiating x there is a way to instantiate y such that "R" holds between them.

Since y can depend on x, we replace all occurrences of y by a new function of x, F(x). We assume F(x) evaluates to the value which makes R(x,F(x)) true.

 $\forall x \exists y R(x,y)$ is equivalent to $\forall x R(x,F(x))$

Skolemization: remove existentially quantified variables

Replace any existentially quantified variable $\exists x$ that is in the scope of universally quantified variables $\forall y_1... \forall y_n$ with a new function $F(y_1,...,y_n)$ (a **Skolem function**)

Replace any existentially quantified variable $\exists x$ that is not in the scope of any universally quantified variables with a new constant c (a **Skolem term**)

CS440/ECE448: Intro Al

45

47

46

The effect of Skolemization

 $\forall x \ \forall y \ \exists w \ \forall z \ Q(x, y, w, z, G(w, x))$ is equivalent to $\forall x \ \forall y \ \forall z \ Q(x, y, P(x, y), z, G(P(x, y), x))$ where P is the Skolem function for w.

NB: the Skolem function is a function, so this is not decidable anymore.

Modus ponens

With propositionalization:

$$\frac{\forall x \; human(x) \rightarrow mortal(x)}{human(s') \rightarrow mortal(s')} \quad \begin{array}{c} human(s') \\ \hline \\ \hline \\ mortal(s') \end{array} \quad (MP)$$

How can we match human(s') and $\forall x human(x) \rightarrow mortal(x)$ directly?

Substitutions

A substitution θ is a set of pairings of variables v_i with terms t_i :

$$\theta = \{v_1/t_1, v_2/t_2, v_3/t_3, ..., v_n/t_n\}$$

- Each variable v_i is distinct
- t_i can be any term (variable, constant, function), as long as it does not contain v_i directly or indirectly

NB: the order of variables in θ doesn't matter $\{x/y, y/f(a)\} = \{y/f(a), x/y\} = \{x/f(a), y/f(a)\}$

Unification

A set of sentences $\varphi_{1,...}\varphi_{n}$ unify to σ if for all $i\neq j$: $SUBST(\sigma,\varphi_{i}) = SUBST(\sigma,\varphi_{i})$.

 σ is the unifier of $\phi_1,...\phi_n$ Subst(σ,ϕ_i) is a unification instance.

Unification

Two sentences φ and ψ unify to σ (UNIFY(φ , ψ) = σ) if σ is a substitution such that SUBST(σ , φ) = SUBST (σ , ψ).

Example:

UNIFY(like(x, M'), like(C',y)) = $\{x/C', y/M'\}$

Standardizing apart

Unification is not well-behaved if ϕ and ψ contain the same variable:

UNIFY(like(x, M), like(C',x)): fail.

We need to *standardize* φ and ψ *apart* (rename this variable in one term):

UNIFY(like(x, M'), like(C',y)) = $\{x/C', y/M'\}$ to yield like(C',M')

Do these unify?

(Single lower case letters are variables)

UNIFY(P(x,y,z), P(w, w, Fred))

 $\sigma = \{x=Fred, y=Fred, z=Fred, w=Fred\}$

Equivalently: $\sigma' = \{x = Fred, w = y, z = Fred, y = x\}$

Both yield P(Fred,Fred,Fred)

Most General Unifier (MGU)

 σ is the most general unifier (MGU) of ϕ and ψ if it imposes the fewest constraints.

The MGU of ϕ and ψ is unique. (modulo alphabetic variants, i.e. different variable names)

Applying the MGU to an expression yields a most general unification instance.

We often define UNIFY(φ , ψ) to return MGU(φ , ψ)

Are there others?

UNIFY(P(x,y,z), P(w, w, Fred))

 $\sigma = \{x=Mary, y=Mary, z=Fred, w=Mary\}$

Equivalently: $\sigma' = \{x = Mary, w = y, z = Fred, y = x\}$

Both yield P(Mary, Mary, Fred)

What is the MGU?

MGU(P(x,y,z), P(w,w,Fred))

 $\sigma = \{x=w, y=w, z=Fred\}$ yields P(w,w,Fred)

Equivalently, $\sigma = \{x=u, y=u, w=u, z=Fred\}$ yields the alphabetic variant P(u,u,Fred)

What is the MGU?

To conclude...

Today's key concepts

Semantics of first-order logic:

Models for FOL

Inference with first-order logic:

Propositionalization (Universal elimination and existential elimination)

Dealing with variables:

prenex normal form, unification and skolemization

To do: read Ch.9.1-3