CS440/ECE448: Intro to Artificial Intelligence

Lecture 4: Heuristic search and local search

Prof. Julia Hockenmaier juliahmr@illinois.edu

http://cs.illinois.edu/fa11/cs440

Tuesday's key concepts

Problem solving as search:

Solution = a finite sequence of actions

State graphs and search trees

Which one is bigger/better to search?

Systematic (blind) search algorithms

Breadth-first vs. depth-first; properties?

Blind search: deterministic queuing functions

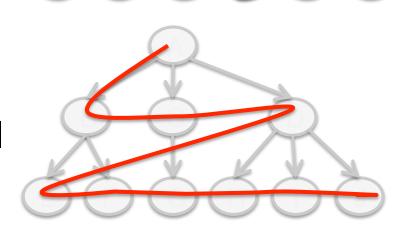
Depth-first search (LIFO)

Expand deepest node first

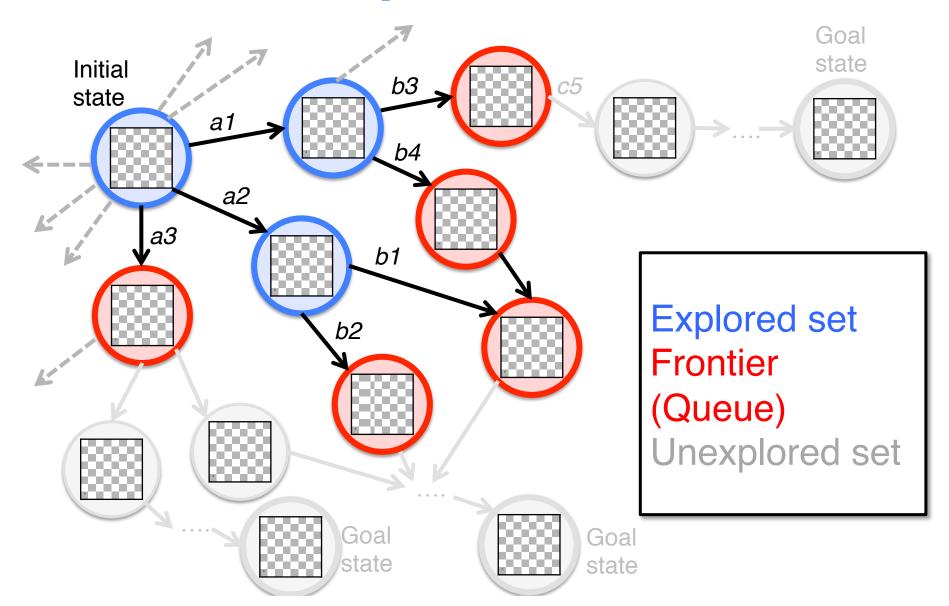
```
QF(old, new):
   Append(new, old)
```


Expand nodes level by level

```
QF(old, new):
   Append(old, new);
```



Graph search



Today's key questions

How can we find the *optimal* solution? We need to assign values to solutions

How can we find a *better* solution if we can only foresee the effect (=value) of the next action?

This is local search.

CS440/ECE448: Intro Al

Informed (heuristic) search

Considering the cost of solutions

We may not just want to find *any* solution, but the *cheapest* solution, if:

- Each action has a (positive, finite) cost
- Some solutions may be cheaper than others

Heuristic search: priority queue

Heuristic search algorithms sort the nodes on the queue according to a cost function:

```
QF(a,b):
    sort(append(a,b), CostFunction)
```

The cost function is an estimate of the true cost. Nodes with the lowest estimated cost have the highest priority.

Heuristic graph search

```
SEARCH(Problem P, Queuing Function QF):
 local: n, q, e;
 q ← new List(Initial State(P));
 Loop:
   if q == () return failure;
   n \leftarrow Pop(q);
   if n solves P return n;
   add n.STATE to e
    for m in Expand(n):
      if m is not in e or q:
           q \leftarrow QF(q, \{m\});
/*NEW: we want to find the cheapest goal!*/
     else if m.STATE in q with higher cost:
               q \leftarrow replace(q, m.STATE, m);
 end
```

Cost from root to node: g(n)

g*(n): Minimum cost from root to n

g*(n) is the sum of the costs for each action from the root to node n.

This requires a cost function for actions

g(n): Computable approximation to g*(n)

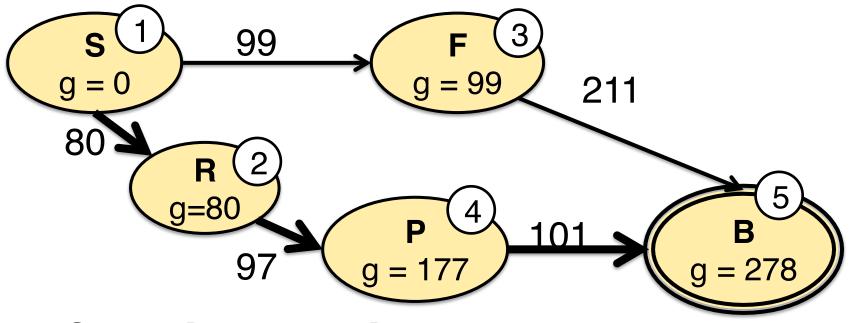
For trees: $g(n) == g^*(n)$

Uniform-cost search

Sort the queue by path cost g(n): First expand the node with lowest g(n)

```
QF(a,b): sort(Append(a,b), g)
```

Uniform-cost search illustrated



S:0 [R:80, F:99]

R:80 [F:99, P:177]

F:99 [P:177, B:310]

P:177 [B:278, B:310]

B:278 [B:310]

CS440/ECE448: Intro Al

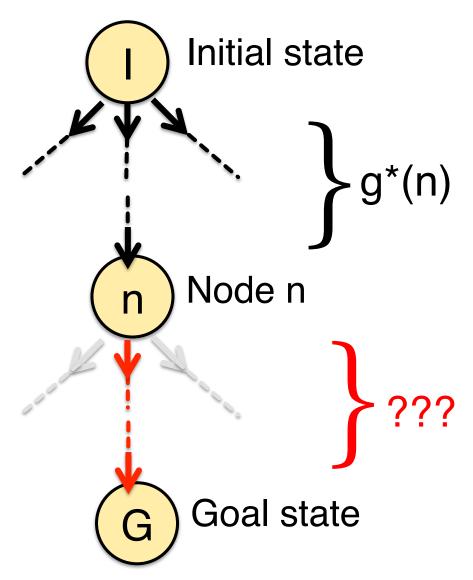
Properties of uniform-cost search

Complete if *b* is finite, and each action has positive (non-zero) cost (gets stuck in loops of zero-cost actions)

Optimal.

Time and space complexity similar to breadth-first search if costs are uniform (possibly much worse otherwise)

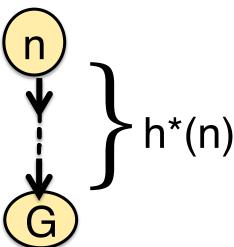
How close are we to the goal?



Cost from node to goal: h(n)

h*(n): the minimum cost from n to any goal h*(n) is generally unknown

h(n): computable approximation to h* h(n) is called the heuristic function



CS440/ECE448: Intro Al

Greedy best-first search

Sort the queue by heuristic function h(n): First expand the node with lowest h(n)

QF(a,b): sort(Append(a,b), h)

Problem: This ignores g(n)

Properties of greedy best-first search

Similar to DFS:

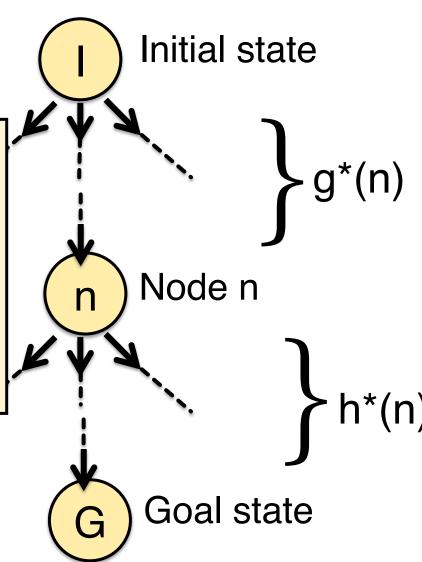
Tree-search version is incomplete.
Graph-search version is complete
in finite state spaces. Both are not optimal.

Worst-case time and space complexity similar to DFS (actual complexity depends on h)

Total cost: f*(n)

f*(n) = g*(n) + h*(n) f*(n) is the lowest cost solution from the

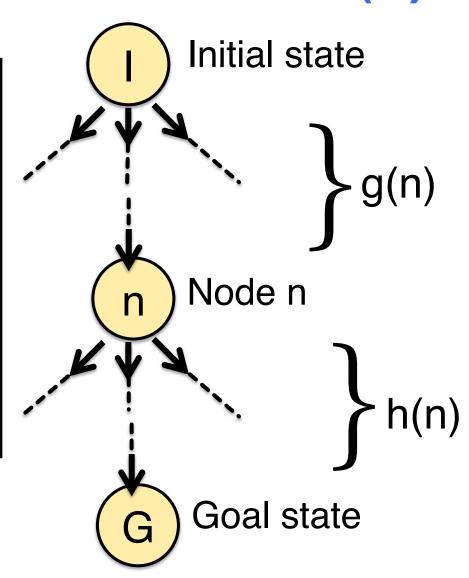
initial state to a goal constrained through n



Total estimated cost: f(n)

f(n) = g(n) + h(n)

f(n) approximates
the lowest cost
solution from the
initial state to a
goal constrained
through n



A* search

Sort the queue by total estimated cost f(n): First expand the node with lowest f(n)

```
QF(a,b): sort(Append(a,b), f)
```

CS440/ECE448: Intro Al

Properties of A* search

A* is **complete** if *b* is finite, and each action has positive (non-zero) cost

Its complexity depends on the heuristic function h(n)

Is A* optimal?

Tree-search A* is optimal if...

...h(n) is an admissible heuristic

Admissible heuristics **never overestimate** the future cost.

Definition h(n) is admissible: $\forall n \in nodes: h(n) \leq h^*(n)$

Tree-search A* is optimal if h(n) is admissible

In tree-search: $g(n) = g^*(n)$

If n is a goal: $f(n) = f^*(n)$

→The goal that is returned is the cheapest on the queue!

If n is not a goal: $f(n) \le f^*(n)$

$$g(n) + h(n) \le g^*(n) + h^*(n)$$

f*(n): true cost of *cheapest goal* that can be reached from n.

If g_{no} is a non-optimal goal, and n_{opt} is an ancestor of the optimal goal g_{opt} : $f(n_{opt}) \le f(g_{opt}) < f(g_{no})$ $\rightarrow n_{opt}$ will be explored first!

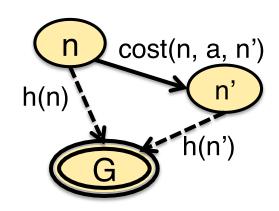
optional material Graph-search A* is optimal if...

...h(n) is monotonic (=consistent

Monotonic heuristics obey the **triangle inequality**: Going from n to the goal via n is at least as expensive as going from n to the goal.

$$\forall n \forall n' \in nodes,$$

 $\forall a \in actions \ with \ a(n) \rightarrow n'$
 $h(n) \leq cost(n, a, n') + h(n')$



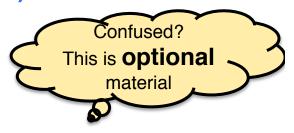
Confused?

NB.: every monotonic heuristic is also admissible

Graph-search A* is optimal if...

...h(n) is **monotonic** (=consistent)

$$h(n) \leq cost(n, a, n') + h(n')$$



Proof sketch:

- 1. If *h* is monotonic, the values of *f(n)* along any path are non-decreasing. (true by definition)
- 2. When n is expanded, $g(n) = g^*(n)$ [we have found the cheapest path to n.] Thus, sorting by f finds the cheapest goal first

Possible Heuristic Functions

Often simplify by relaxing some constraint

```
    h<sub>1</sub>: 3
    h<sub>2</sub> (8-puzzle):
    count # tiles out of place
    h<sub>3</sub> (route-finding):
    sum Manhattan metric distances
```

Uniform-cost: $h_{uniform-cost} = 0$

Informed heuristics

Given: A₁* with heuristic function h₁

and A_2^* with heuristic function h_2

Both A_1^* and A_2^* are admissible

 A_1^* is *more informed* than A_2^* iff for all non-goal nodes $n h_1(n) > h_2(n)$

"More informed": "guaranteed not to search more"

Local search

Motivation for local search

How can we find the goal when:

- we can't keep a queue?
 (because we don't have the memory)
- we don't want to keep a queue?
 (because we just need to find the goal state,)
- we can't enumerate the next actions?
 (because there's an infinite number)

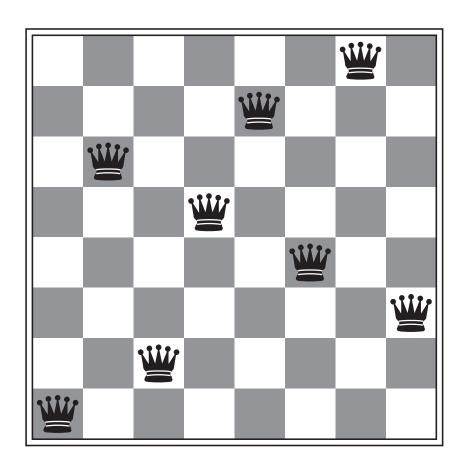
Local search algorithms:

Consider only the current node and the next action

Also useful for optimization: finding the best state according to an objective function

CS440/ECE448: Intro Al

8-queens



8-queens by local search

Initial state:

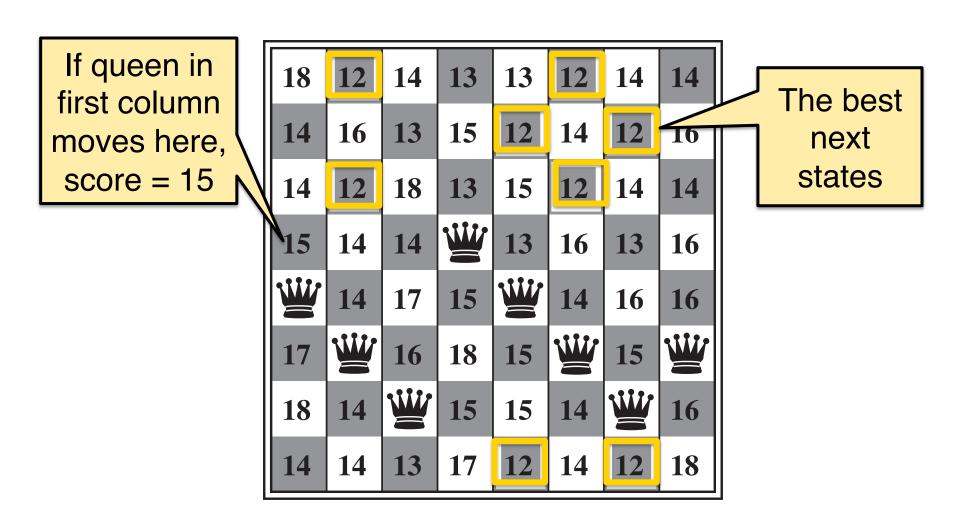
A board with 8 queens, one in each column. (we use a *complete-state formulation*).

Action: Move one queen to another square in its column.

Heuristic function (score):

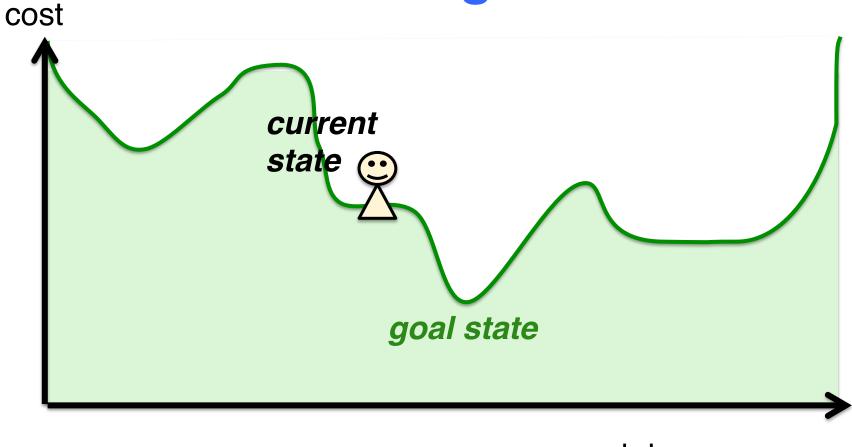
How many queens attack each other?

Possible successor states



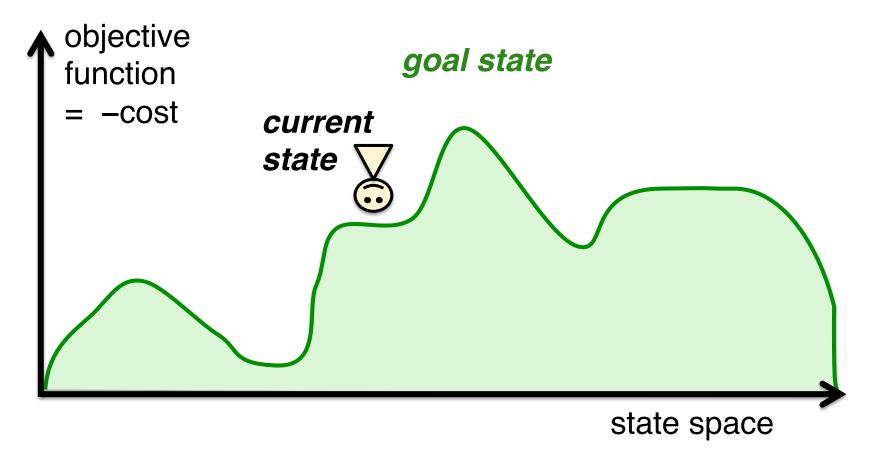
CS440/ECE448: Intro Al

The state space landscape: minimizing cost...

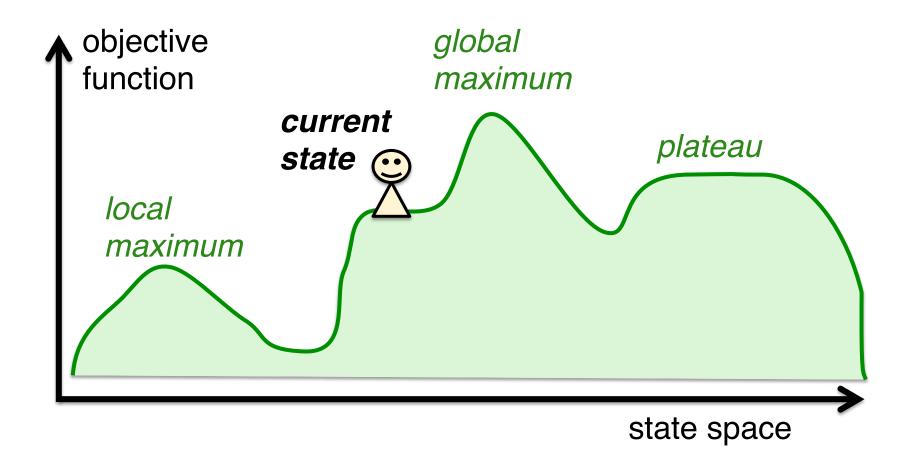


state space

...or maximizing an objective function

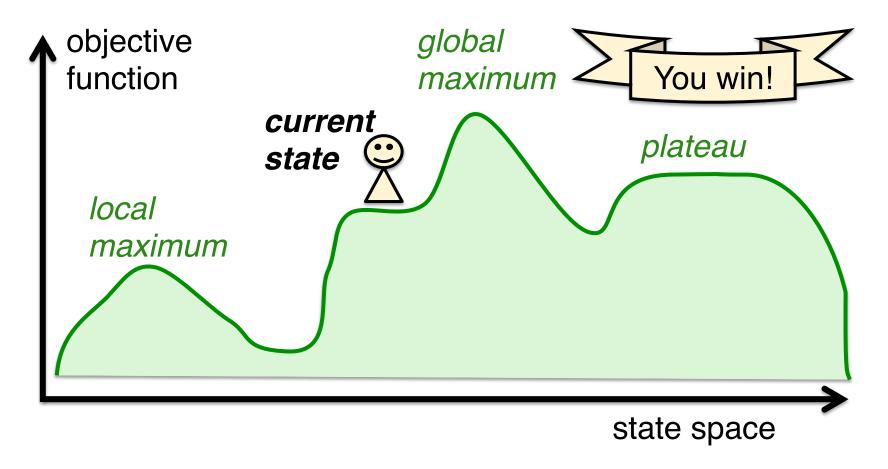


The state space landscape



CS440/ECE448: Intro AI 36

Goal: reaching the global maximum

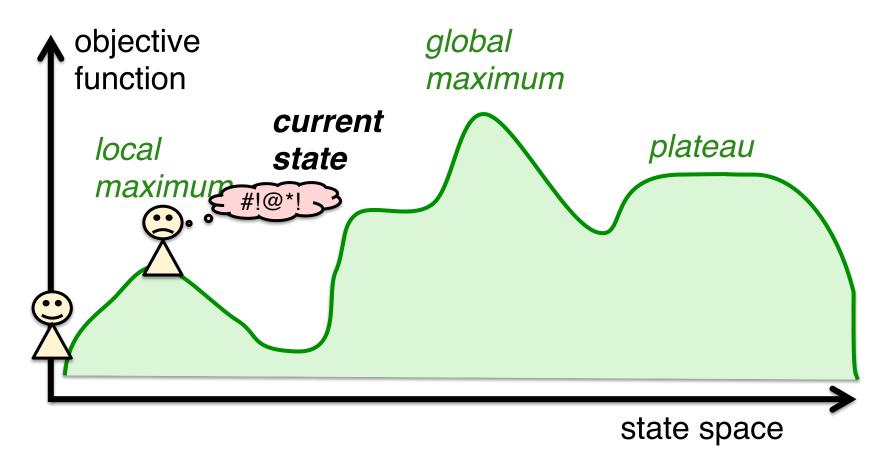


CS440/ECE448: Intro Al

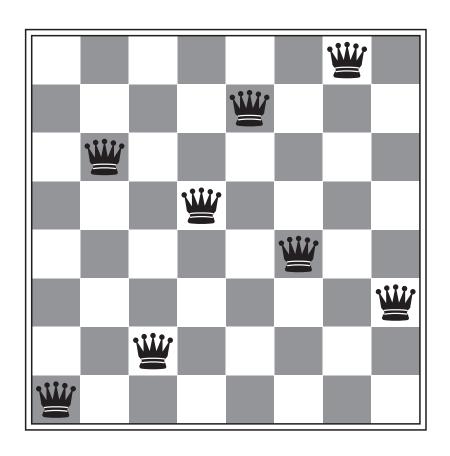
Hill-climbing search

```
HillClimb(Problem P):
 local: n /*current node*/
 n \leftarrow InitialState(P);
Loop:
  n' ← highestValueNeighborOf(n);
 /* Are we at the peak yet? */
  if n'.VALUE ≤ n.VALUE return n;
  else n = n' /* Keep climbing up to n' */
end
```

Problem: local maxima are difficult to avoid

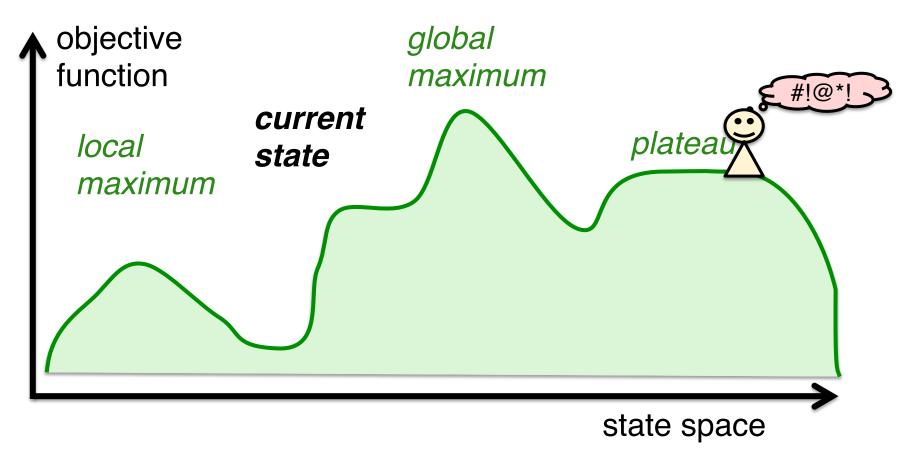


A local maximum for 8 queens



CS440/ECE448: Intro AI

Problem: plateaus are difficult to navigate



Ideal case: Convex optimization objective global function maximum state space

When the objective function is **convex**, search/optimization becomes vastly simplified.

CS440/ECE448: Intro Al

Dealing with local maxima

Random restart hill-climbing:

k trials starting from random positions

k-best (beam) hill climbing:

Pursue k trials in parallel; only keep the k best successors at each time step

Simulated annealing:

Accept downhill moves with non-zero prob.

Random restart hill-climbing search

RandomRestartHillClimb(Problem P):

```
local: n, nMax; /* current best node*/
For r = 1 \dots R: /* try R times*/
 n \leftarrow RandomInitialState(P);
  nMax \leftarrow n;
  Loop (climb):
    n' ← highestValueNeighborOf(n);
    if n'.VALUE > nMax.VALUE nMax ← n';
    if n'.VALUE > n.VALUE n \leftarrow n';
    else exit Loop;
return nMax;
```

k-best (beam) hill climbing

```
K-bestHillClimb(Problem P, int k):
 local: N = Array[k] /*vector of K node*/
 for i = 0...k-1:
    N[i] \leftarrow RandomInitialState(P);
 N \leftarrow sort(N)
 Loop:
    nMax = N[0];
    local: N' = Array[k], M = Array[2k]
    for i = 0...k-1:
       N'[i] ← highestValueNeighborOf(n[i]);
    M \leftarrow sort(append(N, N'));
    N \leftarrow M[0...k-1];
   if N[0].VALUE ≤ nMax.VALUE return nMAx;
  end
```

Simulated annealing

A version of stochastic hill-climbing: go downhill with non-zero probability p_{down}

 p_{down} depends on step size: p_{down} is greater for smaller steps.

 p_{down} depends on current temperature: p_{down} is greater at high temperature. Temperature is a function of time: Start with high temperature, lower gradually.

Computing p_{down}

ΔValue: neighbor.VALUE – this.VALUE In a downhill move, ΔValue is negative.

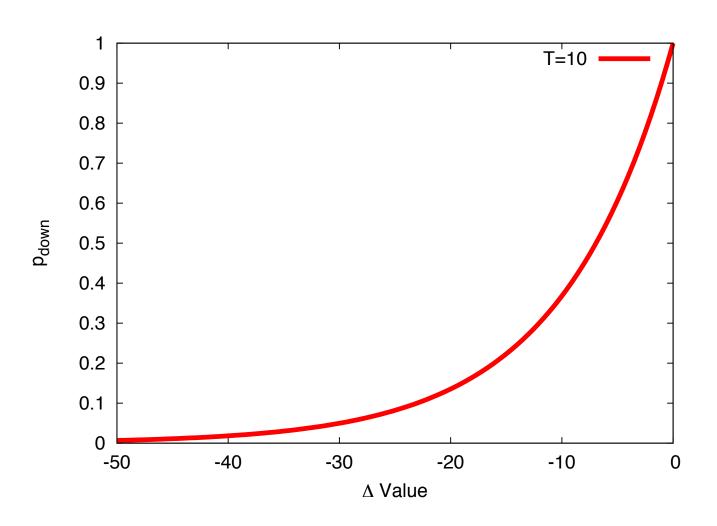
Temperature:

We define temperature to be a decreasing function of time.

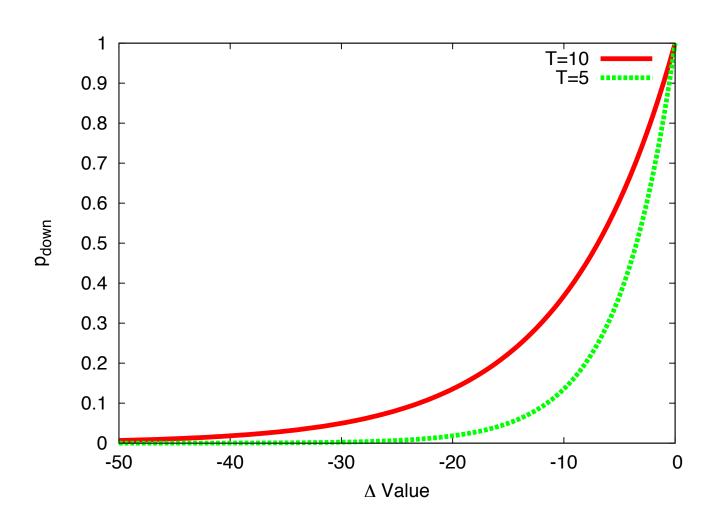
$$p_{down} = e^{\Delta Value/Temperature}$$

CS440/ECE448: Intro Al

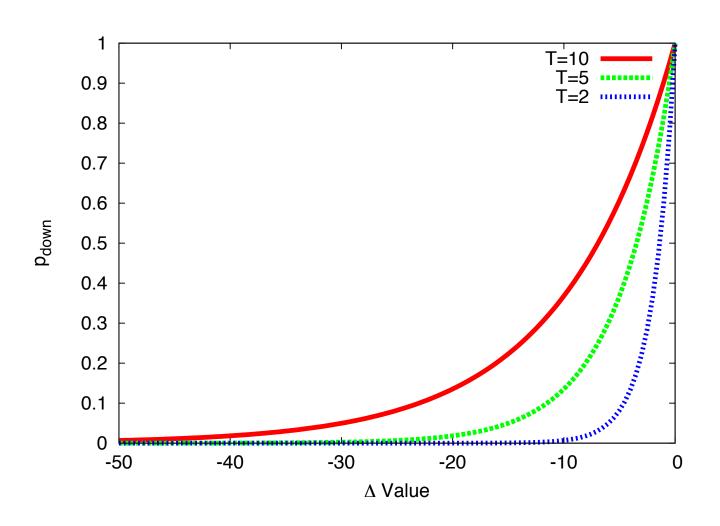
Temperature = 10



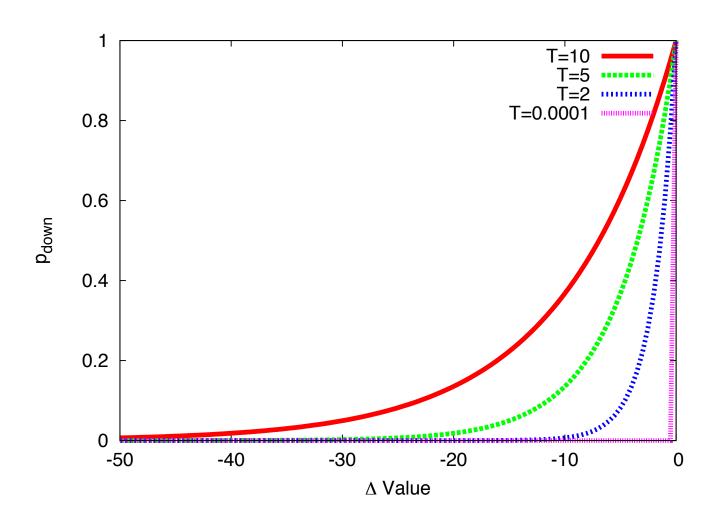
Temperature = 5



Temperature = 2



Temperature = 0.0001



Simulated annealing

```
SimAnnealing(Problem P):
  local: n
 n \leftarrow InitialState(P);
For time = 1 to \infty do:
  Temperature = temp(time);
  if Temperature == 0 return n;
  n' \leftarrow randomNeighborOf(n);
  \DeltaValue = n'.VALUE - n.VALUE;
  if \Delta Value > 0 n \leftarrow n'
  else n \leftarrow n' with prob. e^{\Delta Value/Temperature}
end
```

To conclude...

Today's key concepts

Heuristic search:

Actions and solutions have costs Heuristic function: estimate of future cost Uniform cost, best-first, A*

Local search:

Agent only sees the next steps. Features of the state space landscape Hill-climbing, random restart, beam, simulated annealing

Your tasks

Reading:

Chapter 3.5, Chapter 4.1

Compass quiz:

Up at 2pm

Assignments:

MP 1 will go out this afternoon.