HTODEHN MARKOV MODELY FOR EHGLTSH

Robert 1.. Cave
T.ee ', Monwirth
In 1912 A A, Markovy wrote a paper (1], 1n which he
analyzed "chaine” of vowels and consonants in Pushkin's Poem
Eugene Onegin. The {deas and applicaticns in this paper
continue some of his earlier work (2, 3, 4, 5). But more

significantly, the concepts introduced in these papers

have grown In applicability and have proved so important
that later anthors coined the phrase "Markov Chain” to
describe the mathematical sltuatlon which Is now very well
known. The speclial situation Markov examined is partlicular-
ly interesting to ur, and we have tried, {in the spirit of
Markov's application, t examine the relation of Markov
chains to the English language. The present form of written

English is the result of a long complex process. Fascli-
nating as this evolutlionary process 1s, it is possible to
ignore 1t completely, take a narrow view of the language,
and recover some overt properties as well as try to under-
stand the manner in which letters are put together. 1In-
stead of examining sentence structure or the etymology of
words we may view language as a sequence of symbols from a
27-letter alphabet (Space is the 27th letter.) It is from

this myopic viewpolnt that we try to analyze such sequences.
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Such efforts have been made before, but our method and re-
sults are new. Our results are, we belleve, not surprising
in the sense that they aretsubject to "natural" interpre-
tation. For example, we find that sepératlng the letters
of the alphabet into vowels and consonants, as Markov did
for his analysis, 1s proper in a very strong statistical
sense for English. We are further able, roughly speaking,
to "refine" the original separation into two classes by
making more classes. We have succeeded in analyzing a
separation for up to twelve classes. (These classes are
not disjoint as will be seen.)

The text chosen for analysis was from the Brown
University Sample of Present Day English. We have in-
cluded word space as a twenty-seventh letter but have
eliminated all case, punctuation and hyphenations.

All of this work was done at the Communications Re-
search Division of the Institute for Defense Analyses.

II. The Type of Model

In order to analyze his text, Markov reduced the
Russian alphabet to just two symbols, vowel and consonant,
and explored the chalns of symbols which resulted. We are
more interested in the chains of English letters them-
selves, 8o that we must provide 1in our model means for

generating letters. We could look upan the sequence of




letters themselves as a Markov chaln of order one (or
higher order), and this has been done frequently In the
past. The resulting model 1s usually referred to as di-
graphic English and 1t requires [02 parameters to specify
it. We would like to reduce the number of parameters and
also learn more about the language itself, 5o we will not
use this well-known model.

A particularly convenient model which prov des what

we need, does not destroy Markov's original intent, and

1s effictent as well, is the followling:

We suppose Lhe existence of n Markov «haln of order
one with two states I.et us cnll)l these states V and ¢,
and the traasitlor meirix A. !0 state . v wa produce each
Fnglish letier (includlng word-space) with orobability
Pv(a), rv(c}, U Pvﬁz), Pv(#).‘ In state ©  we produce
the letters with probability Pc(a), Pc(b), o Pc(z),

ﬁ:(*)- Now of course we could make P, zero for consonants,
and non-zero and equal to the appropriate probabllity for
vowels., Similarly we could make PC zero for vowels and

an appropriate value for consonants. If we did this then

we would have a decent model for the generation of English
which preserves Markov's division. On the other hand, let

us consider for a moment our situation. We have a 2 x 2

# means word-space,
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transition matrix A, and a 2 x 27 matrix B, A con-
tains the probabilities of the four sequences vowel-vowel,
vowel -consonant, consonant-vowel, consonant-consonant.
The matrix B contains the probab;lities for each letter
In case we are in state V, or in case we are in state (.

Now, we may ask, why are these two matrices, which after
all completely detqrmine our statistical model, the best
ones to take? Perhaps some other pair of matrices would be
better. Of course we have not sald what "better" means,
80 let us agree now on that point. We say that one model,
X, 1s better than another, Y, 4if the probabllity of pro-
ducing some long sequence of English text is higher with
X than with Y. So we may now rephrase our question more
preclsely: Given a long sequence of text what is the best
model ot the type we are considering? That is, what pair
of stochastic matrices A, B will maximize the probability
of observing the text under consideration? TILater in this
paper using the methods of [7] we propose an answer to
this question.

Now it is clear how to generalize Markov's dichotomy;
we have only to make our underlying Markov chains have
more states!

So, to summarize, we will take as our general model
an S state Markov chain of order 1, and for each state of

that chain we will have a probability distribution on our




alphabet, 1.2, , a letter is produced with a probabllity de-

peundent upon the underlying state. The states themselves
are not assume ) to te observable, and lirdeed we can only
determine probabilistically which state we are in at a glven
time. Since this is the case we call these models Hidden
Markov Models.'

Now for each & = 2, 3, ..., '2 we have found (we
belleve) that 5 » & matrix, and that cet of S probability

distribuations which maxtmize the probability of observing

some partienlar Lorgr stpetoh of Foelicoh t,v,\ttv.l”
I1T. The Model:s fhemoelves

In the tabilec 1 ollewling, we presont the raw results of
the catculatione, Jherr e de 1 ers Lar each S = 2, 3, ..., 12,
a model!, that s, an 5 ~v & trancition matrix, and an

S x 27 output matrix giving the output distributlons in
each state. The stationary probablilities which are the
probabllities of being in each state after a long perilod
of time are also shown.

IV. Discussion ot the Models

What 1is displayed Iin Tables I1-1 — I-11 1s merely a
collection of parameters for a sequence of statistical

models of English. What is important to keep in mind in

TA’They have been called probabllistic functions of Markov
chains, but we find this a bit unwieldy.
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TABLE I-7
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TARLE 1-8
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TABLE I-9
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TABLE 1-10
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the following dircunsion 1s as we have sald that in each
case we have cltained that set of paranmeters which maximizes
the probability of observing a certaln long (15,000 letters)

sequence of Fnglish text.

A cursory examination of the first of the models
(2-state) supwests the naturalness (tor Fnglish) of Markov's
choice of a dichotomy of hils study,. [t 1s clear from
this model that the division of Fnglish into vowels and
consonants s natural In a statistical sense.  Although y
s more comfortable 1n thts model as a vowel, later models
have led us tn refject y ASs A voewel, and from now on let
us agree to call «nly n, e, 1, ¢, u cowels, On the other
hand, such a simpls distaton to na longer possible in the
bigger models, and an understanding ot the meaning of

various states requires some more careful examination.

We notice in the 7 state model (and others) that a
particular state (state 7 in the 7 state model) 1s a "vowel"
state and we see from the transition matrix that state 3
is a kind of "pre-vowel" state; on the other hand, state bk
18 usually followed by state 2 which is dominated by #.

Thus state L might be thought of as a "final-letter" state.

This kind of analysis could be continued but let us
say a bit more precisely what 1t 1s we need to do 1n

order to understand our models. We would like to
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"agsociate" somehow the underlying states with definable
properties of English text letters. A little thought on
this makes one realize that such an association might be
made in one of two ways. On the one hand we can say that
when a certain property p 1is satisfied by some letter,
then we must be in a particular state s at that time,
(p ==> 6). On the other hand we can say that when we
are in some state, then whatever letter 18 produced must
have a particular property (8 ee=> p). Now the fact of
the matter is that both of these possibilities (which we

call Implicative Assoclations) occur in our models, as

well as their conjunction. But, we hasten to add, one

must broaden the ldea of assoclation so that a get of
states rather than a single state may be associated with
some observable property. Now of course the negation of

a property 1s again a property, as well as the conJunctién,
and disjunction of properties. These logical operations
among properties are mirrored by the appropriate opera-
tions among the subsets of states which correspond to

them, e.g., suppose ¢ and T are subsets of the set of
states which are associated with vowels and initial letters,
respectively, then ¢ Nt will be associated with initial
letters which are vowels. The association between g N7

and initial vowels might not be of the implicative type if

. [ [ T— [} [T L i
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o and t are not tmplicative in the same direction. To
gtem the confusion which must now be arising in the reader's
mind, we may ronsider for 11lustrative purposes the 11
state model:

In this model, the following are examples of subsets
of states of Implicative type with the implications golng

in the directions indicated to the propertles indicated:

Properties Subsets
word Spnre e > {10l
vowe ¢ o 12,9,91
Initial letter ———> 12,3,4,8,9)
Final Letter — 5.6,1,11]
Vowel Pre-eder Lemrme {h 1)
Vowel Successor > {(7)
consonant Successor <e== (1}
J = > (8)
Non-final silent h
or 1 before e — (1)
or o

This 1ist is not meant to be exhaustive, but it con-
tains the most obvious set of properties we have been able

to isolate. Except for the last, the associaeens listed

oy
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~ay be verified by examining the matrices for the 11 state
-odel. Other implications, such as the last may be veri-
fled by computlng the probability of being in each state
at each text position [7], and then examining particular
*ext configurations. We have asserted implications when-
ever they are true roughly $5% of the time. In Table II
are displayed 1lists for each of the 11 models constructed.

We may look at the manner in which new states are
utilized as we increase the size of our model. The very
first divislon which appears is the vowel-consonant one,
{with # favored 9 to 2 as a vowel), and this division
persists through the largest model. Eventually four states
are required for the vowels and this allows different dis-
‘ributions for initial and final vowels as we shall see in
a moment.

The second property extracted by this technique is
*he word space, and following this, word beginnings and
word endings appear in the 1ist of implicative properties.
fince the latter two each include several states we can
note that the intersection of the initial (or final)
states with the vowel states gives states properly in-
terpreted as initlal and final vowel states, although
these are not implicative properties since initial and
final letters are implicative in one direction, while

vowels are implicative in the other.




Vowel

Vowel or Space

Spare

Conaonant

vowel or h

Space

Consonant

Final letter

Initial letter
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TABLE 11

2 States

3 States

o {31

— > 2,131

L Staten

ot 131
—— {1
e (4)
—D (2,3}
— (3,4)

Remarks

The only exit
from 2 18 to 3

The only entry
to 3 is from 1

Vowel or h

Space

Consonant

Final Letter

‘Initial Letter

Vowel

Space

Consonant

Final Letter

Initial Letter

Vowel Fcllower

Non-Vowel Follower
(Consonant or #)
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5 States
o {3)
—> (5)
o (1,4)

> (2,3,4)

> {1,3)
6 States
L (2)
—> {(6)
o= (3]
— (1,2,4)

— {(2,3,5)
< v {1)

S {51




Vowel

Space

Consonant

Final letter

Initial Letter

Vowel Follower

Vowel Preceder

Consonant Follower

Vowel

Space

Consonant

Final Letter

Initial Letter
Vowel Follower

Vowel Preceder

Consonant Follower
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7 States
) (1)

— > (2)
e (1,3)
—_—> (4,5,6,7)
— (v,3,7)
o (s)
C o 13}
I (6]

8 States
] (2}
=D (&)
(C Y (3,5,6)
—> [(1,2,3,7,8)

—
o
e

mmm

(2,5,6)
(1)
(6)
(8)

State 6 1is

entered only from
1, t dominatesn

1, and h, 6.

State 8 18
entered only
from 5. t
dominates 5, and
h, 8, State 1
produces a vowel
with probability
~.888,

F

Vowel

Space
Consonant
Final Letter
Initial Letter
Vowel Follower

Vowel Preceder

Vowel

Space
Conscnant
Final Letter
Initial Letter
Vowel Follower
Vowel Preceder

Final Letter
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9 States
{mm= (5,7}
— {6)
(=== te,3,8)
— (1,5,7,8,9)
— ta,3,4,7)
< (BB
e (2,4}

10 States
v (1,8,10)
v— > {9)
Commsran (2,4,6)
— (1,3,4,5,7)
—— {1,2,6,7,8)
< (5)
] (2)
) (3)

The transition
3—>h s
strong. t
dominates 3,

h dominates b,

State 7 tends
strongly to
produce vowel
preceders.

The trans;tion
6 —> 7 1s
very strong,

t dominates 6,

h dominates 7.




ho

11 States
Vowel < o [2,5,91
Space Ce > 110}
Consonant C o (3,4,6,7,8,11)
Final Letter > (2,5,6,7,11)
Initial Letter ==> (2,3,4,8,9)
Vowel Follower Comn (1)
Vowel Preceder o (4,8)
Final Letter C o 16)
Post-Consonant [ [1})
More detalled analysis has shown that { in le

combination arises from state

Vowel

Space
Consonant
Final Letter
Initial Letter
Vowel Follower
Vowel Preceder
Final Letter

Consonant Follower

E

12 States
C {2,5,8,10}
o > {11)
C (1,6,7,9,12)
— {1,3,4,7,8,9,10)
> (b,5,6,10,12})
(] (3,9)
(6}
(] (1)
i (4,2)
o (8)
3. [l [

The transition
3 —> L 18
atrong. t

dominates 3,

h dominates b,

1 dominates 1,
and ' is entered
90% of the time
from 3 (t

dominated) .

and 1o

The transition
12 —> 4 18
strong. t
dominates 12,

h dominates b,

b1

A vowel following state is next to appear although
the most common digraph (palr of adjacent letters) th,
begins to influence the models at about this point (6
states) and a consonant follower state containing h
appears. As with the vowel states almost all the impli-
cative properties which present themselves persist through
12 states.

As may be guessed, a vowel precedent state next shows
itself, and this is essentially the last new state type.
What does happen when more stetes are added 1s that the
space state becomes implicative in both directions, as
does a final letter atate. This 1s what the model is
willing to "spend" its parameters on, and it 1s interest-
ing to note that rather than reflect new properties, the
new model has "chosen" to strengthen the properties
governing its behavior in smaller versions. There 1s,
despite the remarks above conterning the persistence of
properties, a trend toward states dominated by single
letters, and the "e" state in the 12 state model 1s the
strongeat example of this, although the remarks alongside

the models point out other instancea. The reader may

notice how h becomes more and more powerful in one state.

IV. The Letters of the Alphabet

The letters themselves may be examined from the

point of view we have been developing here. To fix 1ideas
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let us concentrate on the 12 state model. As one might

expect, q 1s to be found In the pre-vowel state 6, 1If

each of the other letters is inspected In this way, the

table on the following page results. We have marked only

those properties opposite a letter which are practically

assured. Thus, for example, 1f a letter can ogcur in other

than a final letter state, an x 18 not marked in the

final letter column opposite that letter.

Each letter has i1ts own character, appearing 1in each

of the 12 states with some (possibly zero) probability.

These 12 numbers present a unique profile of each letter,

and similarities in these profiles will naturally suggest

similarities in usage. Thus, e.g., 1 and r have

similar profiles. It 1s instructive to plot these pro-

files for the 2-state model. Thils 1s done in Figure 1,

where the x-axis corresponds to state 1, and the y-axis

to state 2.

The crowding along the axes 1is alleviated when more
states are introduced, and by the time one has 11 states
the separation of letters 1s quite good.

V. The Informatlion in English

Some time ago Shannon (6] investigated the entropy
of English and found that in a certailn gense the informa-

tion rate of English is very close to one bit per letter.
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Thie may be expressed by saying that, given a long sequence
of English text, there are, on average, about two possi-
bilities for the very next letter, Since entropy 1s usually
measured 1in 1og2 the entropy of English is then about 1.
It 1is péssible, using the following formulas, to compare
the information (or resolution of uncertainty)- in our
models with Shannon's estimate: We let H(X) denote the
uncertainty (entropy) in the_Hidden Markov Chain, H(Y)
the uncertainty in the output of our model for English,
H(X]Y) the uncertalnty in the lidden Markov Chaln given

a sequence of text, H(Y|X) the uncertainty in the text
given the Hidden Markov Chain, and H(X,Y)} the un-
certainty in the Joint process. The following formélas

are valid:

(1) H(X|Y) = H(X, Y) - H(Y)

(2) H(Y[|X) = H(X, Y) - H(X)
Subtracting gives
H(Y) = H(Y|X) + H(X) - H(X|Y)

Now each term on the right may be calculated independ-
ently (the firet two precisely, and the third estimated).

When this 1is done we may compare the uncertainty in our




L6

models with the uncertainty as Shannon estimates 1t. This

18 shown in Table ITT.

TABLE I11
States H(X) H(YIX) H(X|Y) H(Y)
2 .8254 3.2890 L1657 3.9486
3 .8871s 3.1266 .6199 3.3942
b 1.0839 2.7060 .6028 .3.18M
5 1.2629 2.5332 L6874 3.1087
6 1.2066 2.4868 .8757 2.8176
7 1.1851 2.4h33 1.0312 2.5913
8 1.5306 2.2143 9909 2.7540
9 1,508 2.1h97 L9757 2.7198
10 1.6140 ?2.0766 11791 2.583%
1 1 .Bo2y 1. BLrg 1.0082 2.6358
12 1.8416 1 .B550 1.21138 2.u828
Shannon's Estimate 1.0

We may note how the entropy for our models quickly falls
below that for monographic and digraphic English (Table V).
This is probably due to the extra structure we have imposed.
H(X), of course, increases as does H(X]Y) and we will
discuss this later.

In addition to this comparison, we may examine the un-
certainty associated with each of the states of our Hidden
Markov Chain. This uncertainty 1s of two sorts. There 1s
uncertainty about the next state, and there 1s uncertainty
about the output given a etate. If we consider the ith

state, then we let Hi(X) denote the entropy of the former

and Hi(YIX) denote the entropy of the latter. These are
displayed in the following tables. ‘

These figures may be compared with entropy for forward

and backward digraphic English. Specifically, we suppose
English 1s sampled from a Markov chaln of order 1 with 27
states. The states are the letters themselves and the
transition probability a is the frequency of the digraph

aB
a, 8 1in English divided by the frequency of the letter a

in the forward case and the letter p 1in the backward case.

Thus, for example, the digraph ab 1s the b state followed

by the a state in the backward case and the reverse in the

forward case. The entropy in each of these cases may be

calculated. Table V is the result.

' The entropy of each letter 1s indicative of the un-
certainty of the succeeding letter in the forward case and
the p;eceding letter in the backward case. From thils point
of view (and as any school child knows) there 1s no in-
formation (resolution of uncertalnty) in letters following

q. On the other hand, the first letter of a word resolves

the maximum amount of uncertainty since the entropy 1s
maximum for letters following the space state. Thus the
first letter of a word, in this sense carries more in-

formation than followers of each of the other letters.



TARLE IV

Hidden Markor Entropy

State "1(X)

1 1.221

2 .906

3 .S5Th
Welghted
Average -8875 = H(X)

Hidden Markov Fntropy

State ul(x)

! .83h

2 1.3

3 1.535

4 .h73
Weighted _
AveTage 1.084 = H(X)

Hidden Markov Entropy

State Hi(X)

1 . 698

2 .Ths

3 1.940

h 1.751

5 .869
Welghted _
Average 1.263 = H(X)

Hidden Markov Entropy

State

|
2

3

Welghted
Average

"1(Y|X)

3.532
3.617
2.447

3.127 = H{Y|X)

Hidden Markov ¥ntropy

State

|
2
3
[y

Welghted
Average

Hl(le)

-529
.520
537
. 685

N W N W

Hidden Markov Entropy

State

|
2
3
L

5

Weighted
Average

Hi(YIX)

3.813
2.72h
2.h66
2.960

.505

2.533 = H(Y|X)

706 = H(Y|X) |

Hidden Markov Entropy

State

woE W N -

6

Welghted
Average

Hidden Markov Entropy

Hy (X)

1

1

1
1

1

.826
1.

164

.106
.662
.0bg
.1L8

.207

Hidden Markov Entropy

State

-

woE W

6

Welghted

= H(X) Average

Hi(Y|X)

NDoNW W

n

.297
.266
.601
.690
.638
.536

.u87

n

State

oA F W N -

7

Welghted

Average

Hy(X)

.039
.54l
L191
.756
.950
.515
.357

1.185

State

1

N W N

1

Welghted

= H(X) Average

| T | N r } | ] 1

Hy(YX)

2.
.57
.032
.608
.303
.5h3
.252

noNwWw N

n

171

Jbk3 =

H{Y |X)

Hidden Markov Entropy

H(YIx)




Hidden Markov Entropy Hidden Markov Entropy
State H, (X) State Hi(YIX)
Hidden Markov Entropy Hidden Markov Entropy
1 1.373 1 1.871
State Hy (x) State "y (Y]X) 2 1.hs7 2 3.951
‘ . ‘ g 3 .278 3 1.666
1. 5
35 N 1.779 b 2.806
2 1.860 2 2.236 :
1418 3 2.131 > 2113 ° 2:Tho
3 : ’ 6 1.280 6 2.315
L 1.576 b .60k
) . o 7 2.221 7 1.820
Z "ijs ; 3'907 8 1.0k9 8 1.633
" , 2' 18 9 1.983 9 .59
; 2.152 . .?w 10 2.080 10 1.880
1,430 2.4
Welghted _ Welighted _
3‘1 Velgnted Vo531 - H(X) Wﬂiﬁ-':'l?.r‘(l 2,000 - H(Y])’.) Average 1.676 = H(X) Average 2.011 = H(Y|X)
Average hverage
Hidden Markov Entropy Hidden Markov Entropy
Hidden Markov Entropy Hidden Markov Entropy State Hi(x) tate Hi(”x)
State Hy(X) State Hi(YIX) 1 1.799 1 1.503
2 1.840 2 1.188
1 2.130 1 2.955 3 1.222 3 1.882
2 .829 2 3.837 I 1.624 b 1.287
3 1.035 3 1.953 5 1.663 5 .T05
4 1.073 4 1.856 6 .253 6 2.05k
5 1,887 5 1.05k4 7 2.h10 7 2.933
6 1.797 6 .513 8 .990 8 3.805
H 7 1.59 7 2.216 9 1.618 9 1.792
8 1.615 8 2.736 10 2.031 10 .000
9 .704 9 1.932 11 2.686 1 2.928
: Weighted - Welghted ~ Weighted _ Welghted
‘ Average 1.546 = H(X) Average 2.150 = H(Y|X) Average 1.803 = H(X) Average 1.842 = H(Y|X)




Hidden Markov Entropy

State

D0V D@ NN FowN

12

Welghted

Average

Hy

(X)

. 298

.13k
.Bus
.136
.7133
.8s8
.529
.2e82
.098
T
.92
. 0Rg

Bh2 = H(X)

Entropy of Monographic

English

Entropy of Forward
Digraphic English

oZIrtRNuUuHIQTM®MOUQE >

WWWW N =W NWMNWNDWN W

NN ESA-HN DO Y

= =N WwWhDWOowW

b0

3.36

.23
.00
.53
.94
.09
.58
.66

93
.64
-39

.72
.10

52

TABLE V

fitdden Markov FEntropy

State

10
"

12

Welighted
Average

Hi(YIX)

1.8
1. 416
2.699
1.388
1.930
3.890
2.754

.281
2.538
v.722

.09%53
2.129

1.855 = H(Y]|X)

Entropy of Backward
Digraphic Engllsh

OZIrRNHIQEHMBUOD>P

-l

— W NN &N

W N W W

81 P 2.760
826 Q 2.155
.836 R 3.263
.873 8 3.466
.030 T 3.1070
.306 U 3.697
.728 vV 2.953
.021 W 1.517
.97 X 1,381
.305 Y 3.413
L2027 2 .927
.538 # 3.624
170

LT1h

.91

o |

3.36

53

This is also reflected in the high entropy for the initial
Jetter state in the Hidden Markov modelé.

On the other hand, from the backward entropy figures
we gee that final letters have somewhat lower entropy, and
this again 1s seen 1n the Hidden Markov model.

One may attempt, using these 1ldeas, to analyze how
the information in English 1s distributed. This is not
8o interesting in the case of digraph models, for in that
cage we must confine ourselves to statements about the
information in letters following or preceding some specific
letter, e.g., letters following e carry more Information
(resolve more uncertainty) than the letters following the
letter v. On the other hand, the Hidden Markov models
allow very different and broader sorts of statements. We
may examine the trend in uncertainty in the letter pro-
duced as the number of states increases. We may track the
gource of the uncertainty in the letters produced. We may
asgert for example that while the vowel states have low
entropy insofar as the letters produced, they have rela-
tively high entropy inesofar as the puccessor state 1is
concerned. Further, in the 12 state model, for example,
there is a post-vowel state with low entropy, thus the

high uncertainty in letters following vowels (as seen




is traceable partly to the high

from the digraph figures) separate more strongly into the more refined types of states

uncertainty in the ldentity of the next state. From this

one encounters; thus, in general, states have less and less

we may infer that vowel states are flexible in that they uncertainty in the letters they produce. However, as the

allow great latitude in the types of letter distributions number of states increases, the uncertainty in the next

for following letters, viz., final letters, space, vowels state following a state (H(X)) would be expected to in-

themeelves, consonants, pre-vowels. The vowels may then crease since there are more states to go to. This 18

be viewed as pivotal letters "permitting” word endings borne out, but the increase is far less than one might

and other types of letter distributions to produce what nalvely expect. For example, suppose the number of states

Livey may Perhiaps one may think of them as the oil of 18 increased from 5 to 10. On the basis explained above,

English. the entropy H(X) (since it 1s expressed in logarithms to

Gross similarity of h to vowels in the 12 state the base 2) should increase by i. It does not; from Table

model (where h dominates state 4) can be observed when III we see that 1t increases by only .41. This indicates

we refer to Table IV where we see that in state 4 we have in some sense the fact that the models become more mean-

relatively high uncertainty about the next state, and low ingful; increasing order is introduced into the models.
entropy for the letter produced, and this 1s a phenomenon
shared by vowel states. When we have a model with a gmall
number of states and this phenomenon 1s not possible we

find h 1in a vowel state.

Let us return to the point raised earlier, that we
may study the trend in uncertainty as the number of states
increases.

A8 one might expect, as the number of states increases,
the average uncertainty in the letter produced by a state

(H(Y|X)) decreases uniformly, as the letters tend to
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MAX IMUM-LIKELIHOOD ANALYSIS FOR MULTIVARIATE
OBSERVATIONS OF MARKOV SOURCES

Louis A. Liporace

ABSTRACTY

This paper discusses a rather general statis-
tical model for multivariate random processes.
The model describes the obscrvation vectors as
noisy multivarlate observations of a Markov chain.
That 1s, each observed vector in turn is drawn from
one of S continuous multivariate distributions.
The sequence of these underlying distributions

forms a Markov chain.

57

geraer T e v e

PSS

e




