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Abstract

In this paper, we present a method for calibrating
intrinsic and extrinsic camera parameters. This al-
gorithm can easily be modified by other users to suit
their particular calibration needs, without requiring a
high precision calibration target or complicated linear
algebra. The algorithm uses controlled motions and
a single light source to simulate calibration targets in
convenient 8D locations. These convenient calibration
targets enable us to simplify the calibration algorithm
and gather dense data for lens distortion. Dense data
makes the distortion correction more accurate than
traditional low-order polynomial fits, and allows us to
calibrate wide-angle lenses (> 70° field of view).

1 Introduction

A wide variety of computer vision algorithms re-
quire some type of camera calibration. Most appli-
cations do not require high precision but, rather, a
flexible, easily-understood algorithm which delivers
moderately good precision for a wide range of cam-
eras and lenses. In particular, the algorithm should
handle wide-angle lenses because these are useful in
navigation, analysis of egomotion, and photography
in confined spaces. (The human eye has a 180° hori-
zontal field of view.) Finally, the method should not
require specialized optical equipment (as in [12, 20]).

Previous image-based calibration algorithms fall
into two classes. The complex target algorithms
[11, 17, 18, 19] compute calibration from a target con-
taining many features whose 3D configuration is pre-
cisely known. For example, Tsai [17] uses a set of
corners on a planar target, translated using a preci-
sion stage. These algorithms are fast, but they require
special precision targets and are “black boxes” which
the typical user can neither understand nor modify.

The moving camera algorithms calibrate camera
parameters by observing the motion of features as
the camera is moved in a known direction. All ex-
isting algorithms in this class are seriously flawed.
Many (1, 3, 5, 7, 8, 9] assume there is no radial distor-
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tion and, thus, cannot be used with wide-angle lenses.
Some [1, 3, 4, 13] cannot calibrate extrinsic parame-
ters: they are set by manual alignment, introducing
unknown errors. Algorithms based on zooming [11]
will not work on non-zoom lenses.

Finally, previous algorithms provide only sketchy
information about radial distortion. Only Oh and
Hall [13] gather dense data on the distortion func-
tion. Other methods calculate one [4, 19, 20], two
[17), or three [11] parameters of a polynomial approx-
imation. These algorithms have been tested only on
low-distortion lenses: field of view less than 65° or
precision fisheye lenses [6, 13, 19]. There is no rea-
son to believe the wide variety of distortion functions
for wide-angle lenses [15] (Figure 1) can be accurately
modeled by low-order polynomials. For example, Fig-
ure 2 shows the systematic errors between two Tsai-
type fifth-order (2-parameter) polynomials and mea-
sured data for our 2.6mm lens (116.5° field of view).

Previous algorithms cannot compute dense distor-
tion data because they cannot choose where their fea-
tures lie in the field of view. We propose a new mov-
ing camera algorithm which dynamically positions a
feature within the field of view, choosing locations
convenient for calibration. This allows us to make do
with a single feature and decompose the calibration
process into a series of simple adjustments to individ-
ual camera parameters. Both intrinsic and extrinsic
parameters can be calibrated, including dense data on
radial distortion and the camera’s intensity response.

2 Method Overview

The standard perspective camera model is not con-
venient for representing wide-angle lenses, and not
capable of representing lenses with a field of view
> 180°. Therefore, we use a more general two-
stage imaging model [2]: perspective projection onto
a sphere, followed by a radially symmetric projection
onto the image plane.

The camera has five intrinsic parameters: the lo-
cation of the principal point in the digitized image,
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Figure 1: Radial projection functions for three lenses
compared to five idealized projection models. Each
was normalized to have the value 30 at 30 degrees
and the line y = = was subtracted.

the aspect ratio relating horizontal and vertical image
distances, the baseline response at each image location
when there is no incoming light, the radial projection
function, and the radial intensity drop-off function.

The camera is mounted on a 6 degree of freedom
positioning device (a Puma 562 robot arm). Six ex-
trinsic parameters relate the robot’s coordinate sys-
tem to that of the camera. R;, Ry and R, are Euler
angles giving the relative orientation of the two coor-
dinate systems. The translation between the origins
of the two coordinate systems is given by T, T, and
T,. The z-axis of the camera coordinate system is the
camera’s optical axis.

We assume that a cooperative user has supplied
approximate values for the extrinsic camera param-
eters and for the principal point. We expect errors
of approximately +2em in the translational parame-
ters and £5° in the orientation of the camera axes,
though our algorithm can correct larger errors (Sec-
tion 5). We expect the principal point to lie within
about 30 pixels of the center of the digitized image.

Throughout the calibration process, motion com-
mands are issued in camera coordinates. A com-
manded camera motion f is translated into a motion
g of the robot’s wrist as follows:
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Figure 2: Tsai-type fifth-order polynomials poorly fit
the radial projection function of our 2.6mm lens.

g = M1'ofoM
M = Tyy,oR,oRyoR,
Our calibration algorithm has four steps:

0: Measure the zero baseline response of the camera.

A: Adjust the extrinsic parameters of the camera:
R., Ry, R,, Tz, T, and T,,. This step assumes
that the input principal point is correct.

B: Measure the remaining intrinsic parameters of
the camera: aspect ratio, radial projection func-
tion, and intensity drop-off.

C: Examine the radial projection function and in-
tensity drop-off for asymmetries. If the principal
point is wrong, correct it and return to step A.

The zero baseline response of the camera is measured
by taking an image in the dark with the lens cap
on. Our full-size CCD cameras have a constant off-
set of 30-50 units (out of the usual [0,255] intensity
range). The miniature cameras used for mounting on
the robot arm have baseline responses that vary in an
irregular way across the CCD array, with a noticeable
slope. It is essential to calibrate the baseline response
if you ever intend to (explicitly or implicitly) divide
one intensity value by another.

The other parameters are calibrated by moving the
camera relative to a single spherical light source fixed
in space, which appears as a bright dot in the cam-
era image. To calibrate the intrinsic parameters of a
large camera, the roles of camera and light could be
reversed: fix the camera in space and mount the light
on the end of the robot arm.

3 Experimental setup

The algorithm was tested using two Toshiba 1K-
M40A miniature color CCD cameras, one with a
Toshiba JK-L75M 7.5mm lens and one with an Elmo
4mm lens (horizontal fields of view 49° and 92°). The
camera heads were mounted on a second-hand, 6 de-
gree of freedom PUMA 562 robot arm, using about



$5 worth of brackets from the local hardware store.
Our calibration code, partly LISP and partly C, runs
on an IBM RS/6000 320H, communicating with the
robot controller via a serial port.

Images are acquired using a Datacube digicolor
framegrabber, which returns 505 by 470 pixel im-
ages. Our calibration target is a frosted white spher-
ical Christmas tree light 1.5cm in diameter, mounted
on a black background. The dot is located in the im-
age by finding the center of mass of all pixels whose
intensity is above a set threshold.

The weak link in this system is the robot arm. Its
positioning accuracy, though acceptable for ordinary
robotics applications, creates small but visible errors
in camera calibration (compare [9]). We are cur-
rently designing a hand-operated calibration mount
for higher-precision calibration of intrinsic parame-
ters. The camera should be calibrated on a mount
at least as precise as the mounts used in applications.

4 Step A: Extrinsic Parameters

The extrinsic parameters are calibrated in the fol-
lowing order:

1: The direction of the camera z-axis: R, and R,
2: The direction of the camera z-axis: R,
3: The location of the camera center along the z-
and y-axes: T; and T},
4: The location of the camera center along the 2-
axis: T,
Throughout this step, we assume that the input prin-
cipal point is correct.

Because the lens may have considerable radial dis-
tortion, extrinsic parameters must be calibrated with
only limited information about image geometry. We
can use angles about the image center (as in {17]). Be-
cause radial projection functions are monotonic and
symmetric about the principal point, we can also de-
termine which of two points is further from the prin-
cipal point (not used by [17]).

Controlled motion of the camera is used to reveal
errors in each parameter. We command a motion
which should have a particular effect on the position of
the calibration dot. The difference between the actual
motion of the dot and the ideal motion is measured
by an evaluation function. Gradient descent is then
used to find the parameter values which minimize the
evaluation function.

Previous calibration algorithms use gradient de-
scent to fit an analytic model to a set of pre-measured
features. By contrast, the gradient descent in our al-
gorithm makes a new measurement of the physical
world whenever it needs to compute the evaluation
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function for new parameter settings. So the robot re-
peatedly executes almost identical motions (doing its
“aerobics”), searching for the best parameter values.
This allows us to make effective use of the monotonic-
ity constraint on radial projection functions.

We cannot rotate the camera without knowing the
location of the camera center. Therefore, steps A1 and
A2 can use only translational motions. Conversely,
since no translational motion can reveal errors in the
location of the camera center, steps A3 and A4 must
use motions involving rotation (and perhaps transla-
tion).

Step Al: R; and R,
1: Center the dot at the principal point.
2: Translate parallel to the estimated camera z-axis.
3: Find the dot pixel position: (z,y)
Evaluation Function: z2 + y?
Discussion: Translation parallel to the actual camera
z-axis should leave the dot fixed at the principal point;
translation in other directions moves it.
Step A2: R,
1: Center the dot at the principal point.
2: Translate parallel to the estimated camera z-axis.
3: Find the dot pixel position: (z,y)
Evaluation Function: y?
Discussion: Translation parallel to the actual camera
z-axis should move the dot along the horizontal line
through the principal point. The evaluation function
measures the distance between the dot and this line.
Step A3: T; and Ty
1: Center the dot at the principal point.
2: Rotate around the estimated camera z-axis.
3: Find the dot pixel position: (z,y)
Evaluation Function: z* + y°
Discussion: Rotation about the actual camera z-axis
should keep the dot at the principal point; rotation
about other axes parallel to the z-axis moves the dot
in a circle.
Step A4: T,
: Center the dot at the principal point.
Rotate #° around the estimated camera z-axis.
Find the first dot pixel position: (z1,y1)
Rotate —f° around the estimated camera z-axis.
: Translate along the camera z-axis.
: Rotate 6° around the estimated camera z-axis.
Find the second dot pixel position: (z2,y2)
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Evaluation Function: (y1 — y2)?

Discussion: The motion of the dot under rotation
about the actual z-axis should not depend on the dis-
tance between the light and the camera. Therefore,
when T, is correct, ¥; and y, should be the same.



Figure 3: The measured error surface of T, and T,
has a smooth slope and a single local minimum.

Table 1: Variation in Output Values
Constant Start | Variable Start
Parameter # a I # Range o
R, 50 0.02° 81 +20° 0.06°
R, 50 0.06° 81 +20° 0.06°
R, 50 < 0.01°7 41 +20° 0.03"
T 50 0.02mm 81 +100mm | 2.32mm
T, 50 0.15mm 81 | +£100mm | 2.22mm
7. 50 1.11mm 41 *+100mm | 3.23mm

The adjustment in Step A4 requires virtual fea-
tures in particular positions relative to one another
and relative to the camera. Our controlled motions
allow us to simulate features at any desired 3D lo-
cation. Because a fixed calibration target may not
contain a suitable set of features, and because he did
not use the monotonicity of radial projection func-
tions, Tsai [17] was unable to compute T, before the
focal length and distortion parameters.

5 Accuracy of Extrinsic Parameters

The implementation of Step A uses a simplified
version of the steepest descent algorithm. Because
our estimated parameter values are typically close to
the final estimates, this algorithm usually converges in
less than 10 steps and requires less than 15 minutes
to calibrate all extrinsic parameters. Our measured
error surfaces have the smooth slope and single local
minimum required for gradient descent, as illustrated
in Figure 3.

To assess sensitivity to noise, we ran the calibration
algorithm for each parameter repeatedly, both from a
constant starting position and from a range of starting
positions. Output values vary little (Table 1) even
when the initial parameter estimates are as much as
20° or 10cm from the correct values.

6 Step B: Intrinsic Parameters

Step A has established a camera coordinate system
based on to the input estimate of the principal point.
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We now use motions in this coordinate system to cal-
ibrate the intrinsic camera parameters: aspect ratio,
radial projection function, and intensity drop-off.

Step B1: Aspect Ratio

: Center the dot at the principal point.
Rotate #° around the camera z-axis.

Find the first dot pixel position: (1, yl)

: Rotate —@° around the camera z-axis.

: Rotate 6° around the camera y-axis.

Find the second dot pixel position: (2,y2)

AR AR I >

Horizontal image distances are then expanded by
(y1/z2).
Step B2: Radial Projection Function

We next calibrate the radial projection function,
p(a), mapping angular positions in the field of view
to pixel distances from the principal point.

1: Center the dot at the principal point.

2: Compute the angle ¢ required to move the dot
into a corner of the image.

3: Rotate in direction ¢ by small angular steps (cur-
rently 1°). At each position, record the distance
between the dot and the principal point, stopping
when the dot reaches the corner of the image.

It is important to rotate into the corners of the image
in order to measure p(a) for the full range of angles
present in the image. Figure 1 shows the measured
values for three lenses.

Previous calibration algorithms compute radial dis-
tortion, i.e. the difference between the measured ra-
dial projection function and ideal perspective pro-
jection p(a) = ktan(a) (where k is a scaling con-
stant). However, this representation works poorly on
wide-angle lenses. Because the cos? intensity drop-
off makes design of perspective lenses difficult for
wide fields of view and impossible for fields of view
above 140°, many wide-angle lenses are designed with
“fisheye” projection functions: ksin(a), k(a), and
ksin(F) [10, 14] (Figure 1). Stereographic projection
(ktan($)), which has convenient geometric proper-
ties, approximates the fisheye projections [2].

Direct representation of the radial projection func-
tion offers several advantages for wide-angle lenses.
The projection function values are always relatively
small, whereas the distortion between a fisheye lens
and perspective projection becomes infinite as the
field of view approaches 180°. The radial projection
function can describe lenses with field of view > 180°
(10]. There is no need for a separate focal length pa-
rameter. Finally, a table lookup algorithm can be
used to undistort a camera image into any of the ideal
projection models.



Step B3: Intensity Drop-off

In an ideal perspective lens, the apparent bright-
ness of an object decreases by approximately cos*(a),
where a is the angular distance from the optical axis
[10]. Because much of the drop-off is due to variation
in how many pixels represent each solid angle, this ef-
fect is greatly reduced or eliminated in fisheye lenses
[10]). Our algorithm measures the effect as follows:

1: Center the dot at the principal point.

2: Compute the angle ¢ required to move the dot
into a corner of the image.

3: Rotate in direction ¢ by small angular steps (cur-
rently 1°). At each position, record the inte-
grated intensity of the dot, stopping when the
dot reaches the corner of the image.

The integrated intensity is the sum of the intensity
values at all pixels contained in the dot, minus the
corresponding values in zero baseline image. Images
can be corrected to remove intensity drop-off using
these integrated intensities, together with the changes
in the dot’s size (which can be computed from the
radial projection function).

7 Step C: Look for Asymmetries

The extrinsic and intrinsic camera parameters were
calibrated using an estimate of the principal point
which may or may not have been accurate. There
could also be tangential distortion, the lens might
be tilted relative to the image plane, the components
within the lens might not be aligned with one another,
and/or the radial distortion might not be symmetrical
about the optical axis. All of these defects, if present,
create asymmetries in the radial projection function
and/or the intensity drop-off. Following previous au-
thors, we assume that most or all observed errors are
due to a displaced principal point.

No calibration algorithm can detect errors in these
alignment parameters unless they induce asymmetries
which are larger than those created by robot position-
ing errors, uneven CCD response, and the like. To de-
tect asymmetries, we repeat calibration steps B2 and
B3, rotating the camera in eight directions (left, right,
up, down, and four diagonals). Ideally, data from all
eight directions should be identical: any differences
indicate errors in alignment parameters.

In some lenses (e.g. [20]), the drop-off in inten-
sity response towards the edges of the image is large
enough that it could be used to detect a mis-placed
principal point. Because our lenses are closer to fish-
eye projection than perspective, intensities vary lit-
tle across our images. The function is so flat that it
would be difficult to locate the peak accurately even
with high-precision measurement of intensity values.
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Figure 4: Left: Differences between the left and right
radial projection functions, for various horizontal dis-
placements of the principal point from the center of
the digitized image. A displacement of —20 pixels
seems to minimize the differences, although a dis-
placement of —30 is similar in quality. Right: Re-
peated measurements (for displacement —20) of these
differences vary by up to 2 pixels.

Asymmetry can also be measured by comparing
values of the radial projection function on opposite
sides of the alleged principal point. Figure 4 shows
the differences between left and right values for var-
ious horizontal displacements of the principal point.
Because the radial projection function has a simple
shape, the sign of these differences indicates the di-
rection in which the principal point is displaced. The
magnitude of the displacement could be estimated by
dividing the left-right differences by the slope of the
radial projection function (cf. optical flow).

The variation between the lines in Figure 4 (left) is
< 6 pixels even when the principal point is displaced
20 pixels. This is consistent with the theoretical anal-
ysis in [17]: the appearance of the image is not very
sensitive to changes in the principal point. The prin-
cipal point can probably be localized to within £5 to
10 pixels, by integrating the radial projection func-
tion differences from Figure 4 across the entire field
of view. This should be sufficient precision for most
practical applications.

Notice that the principal point cannot be found
by translating along an estimate of the camera axis
and detecting the focus of expansion as proposed in
[6] (cf. also [1, 3, 4]). The focus of expansion is de-
termined by which axis you translate along: pick a
(slightly) different axis direction and you get a (sub-
stantially) different focus of expansion and thus a dif-
ferent hypothesis for the principal point. The focus of
expansion algorithm merely makes the estimated axis
and the estimated principal point consistent with one
another (cf. step Al of our algorithm). It has the in-
sidious property that if you choose the axis estimate



in a consistent way (e.g. parallel to the camera body)
it will measure an image position with high repeata-
bility but that position is not necessarily the principal
point.

While we are obtaining radial distortion data in
a given direction, we monitor the dot’s angular po-
sition about the principal point. Variations in this
angle indicate tangential camera distortion and/or in-
accuracy in the commanded camera motions. For our
mount, this typically indicates that the robot arm is
approaching a singularity.

8 Conclusions

By using the full power of controlled motion along
with a single light source we can simulate calibration
features at any desired 3D location. This allowed us to
design a camera calibration algorithm which is very
general (usable even on wide-angle lenses) and easy
to understand. These simulated calibration features
also allow us to densely measure intensity drop-off
and measure the radial projection function more ac-
curately the traditional low-order polynomial models.

The algorithm can be adapted (by a non-expert) for
use on a variety of controllable mounts. Its precision
is limited primarily by the precision of the mount. On
a high-precision mount (e.g. a set of optical stages),
it could produce very high-precision measurements of
intrinsic camera parameters. Even on a robot arm
whose positioning is definitely suspect, it produces re-
sults precise enough for most vision applications. See
[16] for additional details.
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