An algorithm for suffix stripping

M.F. Porter
Computer Laboratory, Corn Exchange Street, Cambridge

ABSTRACT

The automatic removal of suffixes from words in English is of particular interest in the field
of information retrieval. An algorithm for suffix stripping is described, which has been
implemented as a short, fast program in BCPL. Although simple, it performs slightly better
than a much more elaborate system with which it has been compared. It effectively works
by treating complex suffixes as compounds made up of simple suffixes, and removing the
simple suffixes in a number of steps. In each step the removal of the suffix is made to depend
upon the form of the remaining stem, which usually involves a measure of its syllable length.

1. INTRODUCTION

Removing suffixes from words by automatic means is an operation which
is especially useful in the field of information retrieval. In a typical IR
environment, one has a collection of documents, each described by the
words in the document title and possibly the words in the document
abstract. Ignoring the issue of precisely where the words originate, we can
say that a document is represented by a vector of words, or terms. Terms
with a common stem will usually have similar meanings, for example:

CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

Frequently, the performance of an IR system will be improved if term
groups such as this are conflated into a single term. This may be done by
removal of the various suffixes -ED, -ING, -ION, -IONS to leave the
single stem CONNECT. In addition, the suffix stripping process will
reduce the total number of terms in the IR system, and hence reduce the
size and complexity of the data in the system, which is always advantageous.

Many strategies for suffix stripping have been reported in the
literature.t=& -9 The nature of the task will vary considerably depending
on whether a stem dictionary is being used, whether a suffix list is being
used, and of course on the purpose for which the suffix stripping is being
done. Assuniing that one is not making use of a stem dictionary, and that
the purpose of the task is to improve IR performance, the suffix stripping
program will usually be given an explicit list of suffixes, and, with each
suffix, the criterion under which it may be removed from a word to leave

a valid stem. This is the approach adopted here. The main merits of the
present program are that it is small (less than 400 lines of BCPL), fast
(it will process a vocabulary of 10,000 different words in about 8.1 seconds
on the IBM 370/165 at Cambridge University), and reasonably simple.
At any rate, it is simple enough to be described in full as an algorithm in
this paper. (The present version in BCPL is freely available from the
author. BCPL itself is available on a wide range of different computers,
but anyone wishing to use the program should have little difficulty in
coding it up in other programming languages.) Given the speed of the
program, it would be quite realistic to apply it to every word in a large file
of continuous text, although for historical reasons we have found it
convenient to apply it only to relatively small vocabulary lists derived from
continuous text files.

In any suffix stripping program for IR work, two points must be borne in
mind. Firstly, the suffixes are being removed simply to improve IR
performance, and not as a linguistic exercise. This means that it would not
be at all obvious under what circumstances a suffix should be removed,
even if we could exactly determine the suffixes of the words by automatic
means.

Perhaps the best criterion for removing suffixes from two words W, and
W, to produce a single stem S, is to say that we do so if there appears to
be no difference between the two statements ‘a document is about W, and
‘a document is about W,. So if W,=‘CONNECTION’ and
W,=‘CONNECTIONS?’ it seems very reasonable to conflate them to a
single stem. But if W, =‘RELATE’ and W,=‘RELATIVITY’ it seems
perhaps unreasonable, especially if the document collection is concerned
with theoretical physics. (It should perhaps be added that RELATE and
RELATIVITY are conflated together in the algorithm described here.)
Between these two extremes there is a continuum of different cases, and
given two terms W, and W, there will be some variation in opinion as to
whether they should be conflated, just as there is with deciding the
relevance of some document to a query. The evaluation of the worth of a
suffix stripping system is correspondingly difficult.

The second point is that with the approach adopted here, i.c. the use of
a suffix list with various rules, the success rate for the suffix stripping will
be significantly less than 100%, irrespective of how the process is evaluated.
For example, if SAND and SANDER get conflated, so most probably
will WAND and WANDER. The error here is that the -ER of WANDER
has been treated as a suffix when in fact it is part of the stem. Equally a
suffix may completely alter the meaning of a word, in which case its
removal is unhelpful. PROBE and PROBATE for example, have quite
distinct meanings in modern English. (In fact these would not be conflated
in our present algorithm.) There comes a stage in the development of a
suffix stripping program where the addition of more rules to increase the
performance in one area of the vocabulary causes an equal degradation
of performance elsewhere. Unless this phenomenon is noticed in time, it
is very easy for the program to become much more complex than is really
necessary. It is also easy to give undue emphasis to cases which appear to

b B3

be important, but which turn out in practice to be rather rare. For example,
cases in which the spelling of the root of the word changes with the
addition of a suffix, as in DECEIVE/DECEPTION, RESUME/
RESUMPTION, INDEX/INDICES, occur much more rarely in
real vocabularies than one might at first suppose. In view of the error
rate that must in any case be expected, it did not seem worthwhile to
try and cope with these cases.

It is not obvious that the simplicity of the present program is any demerit.
In a test on the well known Cranfield 200 collection ” it gave an improvement
in retrieval performance when compared with a very much more elaborate
program which has been in use in IR research at Cambridge since 1971 (2.6),
The test was done as follows: the words of the titles and abstracts in the
documents were passed through the earlier suffix stripping system, and
the resulting stems were used to index the documents. The words of the
queries were reduced to stems in the same way, and the documents were
ranked for each query using term coordination matching of query against
document. From these rankings, recall and precision values were obtained
using the standard recall cutoff method. The entire process was then
repeated using the suffix stripping system described in this paper, and the
results were as follows:

earlier system
precision recall

present system
precision recall

0 57.24 0 58.60
10 56.85 10 58.13
20 52.85 20 53.92
30 42.61 30 4351
40 42.20 40 39.39
50 39.06 50 38.85
60 32.86 60 33.18
70 31.64 70 31.19
80 27.15 80 27.52
90 24.59 90 25.85

100 24.59 100 25.85

Clearly the performance is not very different. The important point is that
the earlier, more elaborate system certainly performs no better than the
present, simple system.

(This test was done by Prof. C.J. van Rijsbergen.)
2. THE ALGORITHM

To present the suffix stripping algorithm in its entirety we will need a few
definitions.

A consonant in a word is a letter other than A, E, [, O and U, and other
than Y preceded by a consonant. (The fact that the term ‘consonant’ is
defined to some extent in terms of itself does not make it ambiguous.) So
in TOY the consonants are T and Y, in SYZYGY they are S, Z and G.
If a letter is not a consonant it is a vowel.

A consonant will be denoted by c, a vowel by v. A list ccc ... of length
greater than 0 will be denoted by C, and a list vvv ... of length greater
than 0 will be denoted by V. Any word, or part of a word, therefore has
one of the four forms:

CvCv ... C
CVCVv ...V
VCVC...C
VCvC ...V

These may all be represented by the single form
[C] VCVC ... [V]

where the square brackets denote arbitrary presence of their contents.
Using (VC)™ to denote VC repeated m times, this may again be written
as

[C] (VCO)™ [V].
m will be called the measure of any word or word part when represented
in this form. The case m=0 covers the null word. Here are some examples:

m=0 TR, EE, TREE, Y, BY.
m=1 TROUBLE, OATS, TREES, IVY.
m=2 TROUBLES, PRIVATE, OATEN, ORRERY.

The rules for removing a suffix will be given in the form
(condition) S1 — S2

This means that if a word ends with the suffix S1, and the stem before S1
satisfies the given condition, S1 is replaced by S2. The condition is usually
given in terms of m, e.g.

(m>1) EMENT —
Here S1 is ‘EMENT’ and S2 is null. This would map REPLACEMENT
to REPLAC, since REPLAC is word part for which m=2.
The ‘condition’ part may also contain the following:
*S _— the stem ends with S (and similarly for the other letters).
y — the stem contains a vowel.
*d —— the stem ends with a double consonant (e.g. -TT, -SS).

*o —— the stem ends cvc, where the second cis not W, X or Y (e.g. —WIL,
-HOP).

And the condition part may also contain expressions with and, or and not,
so that

(m>1 and (*S or *T))
tests for a stem with m>1 ending in S or T, while
(*d and not (*L or *S or *Z))

tests for a stem ending with a double consonant other than L, SorZ
Elaborate conditions like this are required only very rarely.

vig

1391104

In a set of rules written beneath each other, only one is obeyed, and this
will be the one with the longest matching S1 for the given word. For
example, with

SSES — SS
IES — 1
SS — SS
S —

(here the conditions are all null) CARESSES maps to CARESS since
SSES is the longest match for S1. Equally CARESS maps to CARESS
(S1='SS’) and CARES to CARE (S1=5").

In the rules below, examples of their application, successful or otherwise,
are given on the right in lower case. The algorithm now follows:

Step la
SSES — SS caresses — caress
IES — 1 ponies —» poni
ties — ti
SS — SS caress — caress
S — cats — cat
Step 1b
(m>0) EED — EE feed — feed
agreed — agree
(*v*) ED — plastered — plaster
bled — bled
(*v*) ING — motoring —s motor
sing — sing

If the second or third of the rules in Step 1b is successful, the following
is done:

AT — ATE conflat(ed) — conflate
BL — BLE troubl(ing) —» trouble
1Z — 1ZE siz(ed) — size
(*d and not (*L or *S or *Z))

—, single letter hopp(ing) — hop
tann(ed) — tan
fall(ing) — fall
hiss(ing) —s hiss
fizz(ed) — fizz

(m=1 and *o) — E fail(ing) — fail
fil(ing) — file

The rule to map to a single letter causes the removal of one of the double
letter pair. The —E is put back on AT, -BL and -IZ, so that the suffixes
—_ATE, -BLE and -1ZE can be recognised later. This E may be removed

in step 4.

Step le
(*v)Y — 1 happy — happi

sky — sky

Step | deals with plurals and past participles. The subsequent steps are
much more straightforward.

Step 2
(m>0) ATIONAL — ATE relational — relate
{(m>0) TIONAL — TION conditional — condition
rational —» rational
(m>0) ENCI — ENCE valenci — valence
(m>0) ANCI — ANCE hesitanci —» hesitance
(m>0) 1ZER — IZE digitizer — digitize .
(m>0) ABLI — ABLE conformabili — conformable
(m>0) ALLI - AL radicalli — radical
(m>0) ENTLI — ENT differenth —. different
(m>0) ELI —E vileli — vile
(m>0) OUSLI — OUS analogousli — analogous
(m>0) IZATION — IZE vietnamization — vietnamize
(m>0) ATION — ATE predication — predicate
(m>0) ATOR — ATE operator — operate
(m>0) ALISM — AL feudalism — feudal
(m>0) IVENESS — IVE decisiveness — decisive
(m>0) FULNESS — FUL hopefulness — hopeful
(m>0) OUSNESS — OUS callousness —. callous
(m>0) ALITI — AL formaliti — formal
(m>0) IVITI — IVE sensitiviti —, sensitive
(m>0) BILITI — BLE sensibiliti — sensible

The test for the string S1 can be made fast by doing a program switch on
the penultimate letter of the word being tested. This gives a fairly even
breakdown of the possible values of the string S1. It will be seen in fact
that the S1-strings in step 2 are presented here in the alphabetical order
of their penultimate letter. Similar techniques may be applied in the other
steps.

Step 3

(m>0) ICATE triplicate triplic

(m>0) ATIVE — formative — form
{m>0) ALIZE — AL formalize — formal
(m>0) ICITI — IC electriciti —. electric
(m>0) ICAL — IC electrical —. electric
(m>0) FUL — hopeful — hope
{(m>0) NESS — goodness — good
Step 4

{(m>1) AL — revival — reviv
(m>1) ANCE — allowance — allow
(m>1) ENCE — inference — infer
(m>1) ER — airliner — airlin
(m>1) IC — gyroscopic —» gyroscop
(m>1) ABLE — adjustable — adjust
(m>1) IBLE — defensible —. defens

Suiddiils x13yns 1oy wylod|y uy

clLs

{(m>1) ANT — irritant — irrit
(m>1) EMENT — replacement — replac
(m>1) MENT — adjustment — adjust
(m>1) ENT — dependent — depend
(m>1) and (*S or

*TH ION — adoption — adopt
(m>1) OU — homologou —. homolog
(m>1) ISM — communism —» commun
(m>1) ATE — activate — activ
(m>1) ITI — angulariti —. angular
(m>1) OUS — homologous - homolog
(m>1) IVE — effective —, effect
(m>1) 1ZE — bowdlerize — bowdler

The suffixes are now removed. All that remains is a little tidying up.

Step Sa
(m>1) E — probate — probat
rate — rate
(m=1 and not *o) E — cease —. ceas
Step 5b
(m>1land*dand*L) — single letter control
— controll —
roll — roll

The algorithm is careful not to remove a suffix when the stem is too short,
the length of the stem being given by its measure, m. There is no linguistic
basis for this approach. It was merely observed that m could be used quite

effectively to help decide whether or not it was wise to take off a suffix.
For example, in the following two lists:

list A list B

RELATE DERIVATE
PROBATE ACTIVATE
CONFLATE DEMONSTRATE
PIRATE NECESSITATE
PRELATE RENOVATE

_ATE is removed from the list B words, but not from the list A words.
This means that the pairs DERIVATE/DERIVE, ACTIVATE/
ACTIVE, DEMONSTRATE/DEMONSTRABLE, NECESSITATE/
NECESSITOUS, will conflate together. The fact that no attempt is made
to identify prefixes can make the results look rather inconsistent. Thus
PRELATE does not lose the —~ATE, but ARCHPRELATE becomes
ARCHPREL. In practice this does not matter 0o much, because the
presence of the prefix decreases the probability of an erroneous conflation.

Complex suffixes are removed bit by bit in the different steps. Thus
GENERALIZATIONS is stripped to GENERALIZATION (Step 1),
then to GENERALIZE (Step 2), then to GENERAL (Step 3), and then
to GENER (Step 4). OSCILLATORS is stripped to OSCILLATOR
(Step 1), then to OSCILLATE (Step 2), then to OSCILL (Step 4), and
then to OSCIL (Step 5). In a vocabulary of 10,000 words, the reduction
in size of the stem was distributed among the steps as follows:

Suffix stripping of a vocabulary of 10,000 words

Number of words reduced in step 1: 3597
” 2: 766

iy 3: 327
4: 2424

5: 1373

Number of words not reduced: 3650

The resulting vocabulary of stems contained 6370 distinct entries. Thus
the suffix stripping process reduced the size of the vocabulary by about
one third.

ACKNOWLEDGEMENTS

The author is grateful to the British Library R & D Department for the
funds which supported this work.

REFERENCES

1. LOVINS, J.B. Development of a Stemming Algorithm. Mechanical
Translation and Computational Linguistics. 11 (1) March 1968
p. 22-31.

5 "ANDREWS, K. The Development of a Fast Conflation Algorithm
for English. Dissertation for the Diploma in Computer Science, Com-
puter Laboratory, University of Cambridge, 1971.

3. PETRARCA, A.E. and LAY W.M. Use of an automatically gen-
erated authority list to eliminate scattering caused by some singular
and plural main index terms. Proceedings of the American Society for
Information Science, 6 1969 p. 277-282.

4 DATTOLA, Robert T. FIRST: Flexible Information Retrieval Sys-
tem for Text. Webster N.Y: Xerox Corporation, 12 Dec 1975.

5. COLOMBO, D.S. and NIEHOFF R.T. Final report on improved
access to scientific and technical information through automated vocab-
ulary switching. NSF Grant No. S1S75-12924 to the National Science
Foundation.

6. DAWSON, J.L. Suffix Removal and Word Conflation. ALLC Bul-
letin, Michaelmas 1974 p. 33-46.

7 CLEVERDON, C.W., MILLS J. and KEEN M. Factors Deter-
mining the Performance of Indexing Systems 2 vols. College of Aero-
nautics, Cranfield 1966.

91¢

191l0d

