How much to steal?? An experiment

• Experiment: Divide 3M words of Wall Street Journal into 2 halves. Compare word counts across the two halves.

Count 1	Count 2	Word	Count 1	Count 2	Word
1	0	abacuses	1	2	abilities
11	6	abandon	86	72	ability
29	21	abandoned	1	0	ability
4	8	abandoning	0	1	ablaze
0	2	abandonment	192	149	able
2	0	abandons	0	1	able-bodied
1	0	abashed	4	9	abnormal
0	2	abate	0	2	abnormalities
1	1	abated	0	2	abnormality

Conclusion: The smaller the count the worse the estimate of what the count will be in a new, unseen data set.

Data from Mark Liberman

CIS 421/521 - Intro to AI

Key idea: Deleted Estimation

- For all words with a given count in the first half, just use the average count in the 2nd half of those same words as the smoothed count
- Better: do both halves then average
- Key Idea:
 - Pool all items with the same frequency
 - Compute average counts across halves
 - Replace raw counts with the smoothed estimates

Half 1	Half 2	Half 1	Half 2
0	1.60491	8	7.53499
1	0.639544	9	8.27005
2	1.59014	10	9.50197
3	2.55045	11	10.0348
4	3.49306	12	11.2292
5	4.45996	13	12.7391
6	5.23295	14	12.5298
7	6.28311	15	14.1646
		-	

CIS 421/521 - Intro to AI