- Homework 2A due Thursday
- Planning: Today & part? of Thursday
- Next Reinforcement Learning
- Begins statistical Al
- Start reading Ch 17 & 21

Classical Planning

Using inference to find a sequence of operator instances (actions) that transform an initial state into a state in which the goal is satisfied.

Real World Applications:

Scheduling, Logistics, Semantic web support, Computer gaming, ...

Planning vs. Search

Interesting action sequences

All action sequences

Search operators are "inferentially opaque"

Planning allows reasoning about state features

Domain Independent Planning

- Study the planning process
 - Abstract
 - Not domain dependent
- Ontology, operators, etc. define the domain

- Operators model world dynamics
 - Situation Calculus
 - Strips Operators
 - PDDL Operators*
- Search

- Pure FOPC

 Specialized syntax
- State Space: Forward / Backward
- Plan Space
- Heuristics
- Propositionalization
- * Ch10 R & N say PDDL but actually discuss Strips

All Reachable Situations are Defined

Given: 1) the Initial State

2) Axioms of World Change (operator definitions)

 $\Delta \equiv$ Initial State \cup Operator Definitions

Planning is theorem proving

Find a situation where the goal holds

Several ontologies possible (ways to conceptualize the world and its changes)

Operator - General knowledge of one kind of change

Action - Ground instance of an operator

Silly domain but concisely illustrates many GENERAL planning issues

Alternative Ontologies

change a block's position differently

Move-Block

Move-Gripper

Grasp-Block

Move-Gripper

UnGrasp-Block

Move-Gripper

Open-Gripper

Move-Gripper

Close-Gripper

Motor1-Velocity
Motor2-Velocity

•••

Motor1-Voltage (Current, Duty Cycle)

Motor2-Voltage

•••

 $\bullet \bullet \bullet$

Levels of Ontological Commitment

Only support relationships change: On, Clr
A block can support at most one other block
The table can support any number of blocks
Generalized block movement – no gripper

Operators: Situation Calculus

FOPC with some conventions

Assume a Move-Block ontology with at most one block directly on top of another a big table (always empty space available)

Move(x, y, z) operator to move x from y to z

FOPC Inference is Monotonic

Situation Calculus solution:

BTW, what's a predicate?

Fluents

- Relationships that may be situation sensitive
- "On" & "Clr" relationships can change
- On(x, y) or On(x, y, s) is a fluent
- Blk(x) need not be

The "Result" Function:

Result: Action \times Situation \rightarrow Situation

Result (Move (A, B, C), Si)

Result (Move (B, Tbl, A), Result (Move (A, B, C), Si))

It denotes; it is not truth-valuable

Straightforward generalization to variables:

Result (Move (?x, ?y, C), Si)

denotes the set of situations where something was just moved to C from the initial state Si

Useful in "Goal Regression" planning

World Change

Initial State: Si

Next State: Result (Move (A, C, Tbl), Si)

On(A, Tbl, Result (Move (A, C, Tbl), Si))

...

In Situation Calculus, States / Situations are Individuated by History and not Block Configuration

the Move operator

Move(x, y, z) definition has the form:

```
\forall x \ \forall y \ \forall z \ \forall s \ \Theta \Rightarrow \Psi
  If \Theta holds (things in s)
         x is on y
         z is clear
                                  Preconditions
         x is a block
         x is clear
   Then \Psi will hold (things in Result(Move(x,y,z),s))
         x is on z
         y is clear
                                  Effects
```

the Move operator

(partial)

```
Move(x, y, z)
\forall x \ \forall y \ \forall z \ \forall s \ [
        (Clr(x, s) \wedge Clr(z, s) \wedge On(x, y, s))
        \wedge Blk (x) \wedge Diff(x, z) \wedge Diff(y, z))
         (On (x, z, Result (Move (x, y, z), s)) \land
         Clr (y, Result (Move (x, y, z), s)) \land
         Clr (x, Result (Move (x, y, z), s)) \land
                                                                    Conditional
         Table (z) \Rightarrow
                                                                         Effect
               Clr(z, Result(Move(x, y, z), s)))
```

Only Partial. Why?

Do we need to retract fluents?

On (x, y, s) - situation-specific relations

Do we need to assert negative fluents?

 \neg On (x, y, Result (Move <math>(x, y, z), s))?

No, not in Situation Calculus (why not?)

Frame Axioms

- Logic requires an inference path to determine that something holds
- Some relations are not involved
- May need to use these relations later
- If they don't persist through Move...

The Need for Frame Axioms

And suppose there were other blocks: D, E, F...

Move Frame Axioms

```
Move(x, y, z)
\forall x \ \forall y \ \forall z \ \forall s \ [
          (Clr(x, s) \land Clr(z, s) \land On(x, y, s) \land Blk(x) \land Diff(x, z))
          ([\forall v \ \forall w \ (On \ (v, w, s) \land Diff(v, x)) \Longrightarrow
                         On (v, w, Result (Move (x, y, z), s)))
           [\forall v (Clr (v, s) \land Diff(v, z)) \Longrightarrow
                           Clr (v, Result (Move (x, y, z), s)) ] ]
```


Goal ?s

Find an ?x and ?s s.t.:

On(C, ?x, ?s)

Blk(?x)

Negate Goal, add to axioms w/ Answer literal

Goal:

 $\exists x \exists s [On(C, x, s) \land Blk(x)]$

Negated

 $\forall x \ \forall s \ [\neg \ On(C, x, s) \lor \neg \ Blk(x)]$

Goal

Clause form $\{\neg On(C, ?x6, ?s8), \neg Blk(?x6), Answer(?s8)\}$

w/ Answer

literal, variables standardized apart and designated with '?'

Situation Calculus

- No central operator "definition"
- Knowledge about an operator can be distributed across many WFFs
- Consider "Move" in clause form

STRIPS Operators

- Frames from animated cartoon "frames"
- Writing them can be tedious
- Luckily relatively few things change
- Strips operators are more concise
- Historically: <u>St</u>anford <u>Research Institute</u>
 <u>Problem Solver</u>

World Changes

Action must fully define resulting world state

Operators

In Situation Calculus

In Strips

Specify fluents

Add set

Persist set

No mention = no inference path

By default

fluents are Deleted

Specify fluents

Delete set

Add set

By default

fluents Persist

More concise because usually

|Persist| >> |Delete|

Strips Operators

- Preconditions list of positive literals
- Effects also positive literals (N.B. below)
 - Delete list things to be retracted
 - Add list things to be asserted
- Effects can be combined in one list (as R & N)
 - Delete elements designated with "¬"
 - This is *not* logical negation (think about why)

Representations

In Situation Calculus

Δ contains all initial WFFs

No distinction between operators and initial state

Operator definitions distributed throughout Δ

In Strips

Operator information is centralized

Operator information is stored separately

State information is stored separately for each state

No longer need a situation designator

Closed world assumption