Start reading Ch. 7, 8, 9
Project topics

Course web site
http://www.cs.illinois.edu/class/cs440/
or
http://www.cs.uiuc.edu/class/fal0/cs440

Generic Search Function

SEARCH (Problem P, Queuing Function QF) :

local: n /* current node */
q /* nodes to explore */
g < singleton of Initial State(P);
Loop:
1if g = () return failure;

n < Pop(q);

if n Solves P return n;

q < QF(qgq, Expand(n));
end

Depth First: QF (0ld, new) : Append (new, old);
Breadth First: QF (0ld, new): Append(old, new);

Sample Search Tree

Depth First

n

) @) M m o > !

q (between iterations)
(A)

B CD)

EFCD)

CD)

(

(
(FCD)
(

(G D)
(

D)

Sample Search Tree

Breadth First

n

A
B
C
D
E

(FGHIJ)

Costs

Performing the search to find Goal
— Time

— Space

Executing an operator in the world
We will focus on execution cost

We assume
— Positive finite cost for each action
— Finite branching factor

Important cost functions: g, h, f

Define: g*(n) as minimum cost from root to n YneNodes

Define: g(n) as an easily computable approximation to g*

How might we compute g?
Need an execution cost model for each operator
How might g(n) = g*(n)?

In fact it is usually easy to guarantee g(n) = g*(n)
(especially for trees!)

Note the node alone determines which operators can apply next (First Order Markov:
history is unimportant to world dynamics
— more later)

Define: h*(n) as minimum cost from n to a goal VneNodes
Define: h(n) as an easily computable approximation to h*
his called a “heuristic function”

Define: f(n) as g(n) + h(n)

@ Initial State

@

» 0\
Lowest cost solution constrained

through n J h*(n)

f(n) approximates this

A search algorithm (together with its heuristic function if needed) is
admissible iff for all search trees:

A) If there exists a goal, the search will not fail.

B) If there are multiple goals the search will find the best (least
expensive to execute) goal.

Search Function

SEARCH (Problem P, Queulng Function QF) :
local: n /* current node */
q /* nodes to explore */
q < singleton of Initial State(P);
Loop:
1if g = () return failure;

n < Pop(q);

if n Solves P return n;

d < QF(g, Expand(n));
end

QF (a,b): Sort (Append(a,b), [])

g — uniform cost
h — best first / greedy
f— A/JA*

Complete Search Tree

h(S)=2 @
/ X application of operator \6

costs 6

e double circle

\3 \\ indicates a goal
@ @ 6 9 Remember the notation.

\ We’'ll use it throughout our

J \ search discussion

Uniform Cost

Complete Search Tree " a
- (A)

(B CD)

(CDE)

(DEGF)

(EGHIF)

(GKJHIF)

(MKJHILNF)

(KIHILNF)

zgmmcnw:D

(JHILNF)

G

(HILNF)

local variables n and g
between iterations

n

of loop block

Best First / Greedy
q
(A)
(D CB)
(HCBI)
(CBI)

Uniform Cost

n

~ 2 6 mMm o o w »

G

q
(A)

(B C D)

(CDE)
(DEGF)
(EGHIF)
(GKJHIF)
(MKJHILNF)
(KJHILNF)
(JHILNF)
(HILNF)

A/ A*

A m w 2 6 0O O P

q

(A)

(D CB)
(CBHI)
(GBHFI)
(MBHNLFI)
(BHNLFI)
(EHNLFI)
(KIHNLFI)
(JHNLFI)
(HNLF1)

Example: 8-Puzzle

4 8 2

1 6

5 3 7
Initial State

Four Operators:

1 2
Ve BEE
7 8

Goal

MoveTileUp
MoveTileDown
MoveTileLeft
MoveTileRight

(preconditions and effects)

(alternative possibilities)

Aside: What is a Solution?

What is the 8-puzzle goal?
Sometimes the path is the goal...
What about cryptarithmetic?
What individuates a Node?
Searching graphs...

Possible Heuristic Functions

Often simplify by relaxing some constraint
N, 3
n,: count tiles out of place

n5: sum Manhattan metric distances

Admissibility of A*

Some authors use “A” if not met

1) Vn Vn’ € nodes, Yo € operators
with o(n)—n’

h(n) < cost(n,o,n’) + h(n’)
Triangle inequality, Montonicity, or

Consistency
(for trees...)

Admissibility of A* (cont)
2) Vn € nodes
h(n) < h*(n)

Informally: be optimistic
(or don’t be pessimistic)
Why? Could you prove it?

Important General Principle:
Optimism Under Uncertainty

Does not depend on problem or tree!

Is “Uniform Cost” admissible?

We have:

A,* with heuristic fcn h,
A,* with heuristic fcn h,

A.* and A,* are admissible
Then we say

A.* is more informed than A,*
iff for all non-goal nodes n
hy(n) > hy(n)

“more informed” implies “guaranteed not to search more”

* Achievement or Satisfiability goals
— Goal is achieved or it is not
— Later: zero / one loss function
— Combinatorial
* Optimization goals
— Do the best you can
— Continuous loss
— Local / efficient: Gradient information
— “Convex optimization” is influential today

Different Search Protocols

e Satisfiability - solve the problem
— previous searches
* Optimizing - maximize utility
— alterations needed
 Satisficing - good enough optimization

— Combination; somewhat informal

Optimizing / Satisficing require some kind of metric space
U:N—> R

Utility function maps nodes to real numbers; higher is better

Locally Optimizing Search

e States have utilities
 Smoothness properties
* Want highest utility node

* Heuristic fcn can be used to compute
utility as 1/h or - h
— larger utility (smaller h) is better
— SORT still orders nodes best to worst

* Some access to the local gradient

Hill Climbing, Optimizing Beam

(steepest descent if directly using h as before)

Search Function

SEARCH (Problem P, Queulng Function QF) :
local: n /* current node */
q /* nodes to explore */
q < singleton of Initial State(P);
Loop:
1if g = () return failure;

n < Pop(q);
if n Solves P return n;

q <« QF (g, Expand(n)):;
end

QF (a,b): Sort (Append(a,b), [])

g - uniform cost
h - best first / greedy
f-A/A*

Locally Optimizing Search: Hill Climbing

SEARCH (Problem P, Queulng Function QF) :

local: n /* current node */
q /* nodes to explore */
q < singleton of Initial State(P);
Loop:
if g = () return n;

1f First(g) < n return n;

n < Pop(q);

q < QF (g, Expand(n));
end

QF (a,b) : Sort (Append(a,b), h);
Delete all but best;

Hill Climbing Difficulties

e Foothill - local maximum
e Plateau - little information

* Ridge - can’t go that way

An Aside

(but an important conceptual generalization)

* Note the efficiency of using local guidance
— Metric
— Smooth
— Gradient

* Conditions for global solution?
— No foothills, no plateaus, no ridges...

— Local (linearized) information

* Qualitatively correct
* Although quantitatively incorrect

* Convex Optimization

Recall Best First / Greedy

SEARCH (Problem P, Queulng Function QF) :

local: n /* current node */
q /* nodes to explore */
q < singleton of Initial State(P);
Loop:
1if g = () return failure;

n < Pop(q);

if n Solves P return n;

d < QF(g, Expand(n));
end

QF (a,b) : Sort (Append(a,b), h);

Beam Sea rCh w/ beam width k

SEARCH (Problem P, Queulng Function QF) :
local: n /* current node */
q /* nodes to explore */
q < singleton of Initial State(P);
Loop:
1if g = () return failure;
n < Pop(q);
1f n Solves P return n;
q < QF (g, Expand(n));
end

QF (a,b) : Sort (Append(a,b), h);
Delete all but the best k;

Locally Optimizing Beam Search

w/ beam width k

* VVariable “n” becomes a vector
of k nodes

* Find all descendants at once

» Sort descendant list by “h” and
delete all but the best k

* Return as in Hill Climbing using
best(n)

Search Properties
Tentative (don’t throw away information)

Depth First
Best First/Greedy

Breadth First Uniform Cost
A*

Irrevocable (throw away information)

Hill Climbing

Beam Optimizing Beam

0S

h First . . . if . *
ExhaustiVe (Will visit allhodeés or find goal)

Uniform Cost

Admissible

A* [if consistency & optimism]

Non-Systematic Search:
Simulated Annealing

.S. Goal
State —

Simulated Annealing

Analogy w/ metalurgy

Add thermal energy; noise; randomness
Propose / accept actions probabilistically
Initially noise / randomness dominates
Cooling schedule: converge to determinism
Guarantees?

Compare random restart hill-climbing

