
1

Start reading Ch. 7, 8, 9

Project topics

Course web site
http://www.cs.illinois.edu/class/cs440/
or
http://www.cs.uiuc.edu/class/fa10/cs440

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return failure;

n  Pop(q);

if n Solves P return n;

q  QF(q, Expand(n));

end

Depth First: QF(old, new): Append(new, old);

Breadth First: QF(old, new): Append(old, new);

Generic Search Function

2

Sample Search Tree

A

DCB

JIHGFE

Depth First

n q (between iterations)

- (A)

A (B C D)

B (E F C D)

E (F C D)

F (C D)

C (G D)

G (D)

3

Sample Search Tree

A

DCB

JIHGFE

Breadth First

n q

- (A)

A (B C D)

B (C D E F)

C (D E F G)

D (E F G H I J)

E (F G H I J)

  

4

Costs

• Performing the search to find Goal
– Time
– Space

• Executing an operator in the world
• We will focus on execution cost
• We assume

– Positive finite cost for each action
– Finite branching factor

• Important cost functions: g, h, f

5

Define: g*(n) as minimum cost from root to n nNodes

Define: g(n) as an easily computable approximation to g*

How might we compute g?

Need an execution cost model for each operator

How might g(n)  g*(n)?

In fact it is usually easy to guarantee g(n)  g*(n)
(especially for trees!)

Note the node alone determines which operators can apply next (First Order Markov:
history is unimportant to world dynamics

– more later)

6

Define: h*(n) as minimum cost from n to a goal nNodes

Define: h(n) as an easily computable approximation to h*

h is called a “heuristic function”

Define: f(n) as g(n) + h(n)

I

n

G

g*(n)

h*(n)

Initial State

Lowest cost solution constrained
through n

f(n) approximates this

7

A search algorithm (together with its heuristic function if needed) is
admissible iff for all search trees:

A) If there exists a goal, the search will not fail.

B) If there are multiple goals the search will find the best (least
expensive to execute) goal.

8

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return failure;

n  Pop(q);

if n Solves P return n;

q  QF(q, Expand(n));

end

QF(a,b): Sort(Append(a,b), [])

[]=

Search Function

g  uniform cost
h  best first / greedy
f  A / A*

9

Complete Search Tree

A
12

D
2

C
4

B
7

G
0

F
5

E
2

J
0

I
9

H
0

K
0

L
5

M
0

N
0

O
5

P
8

5 6 7

74

103 6 63

33 5 52

S
2

T
0

6

h(S)=2

application of operator
costs 6

double circle
indicates a goal

Remember the notation.
We’ll use it throughout our
search discussion

10

Complete Search Tree

Uniform Cost

n q

- (A)

A (B C D)

B (C D E)

C (D E G F)

D (E G H I F)

E (G K J H I F)

G (M K J H I L N F)

M (K J H I L N F)

K (J H I L N F)

J (H I L N F)

11

A
12

D
2

C
4

B
7

G
0

F
5

E
2

J
0

I
9

H
0

K
0

L
5

M
0

N
0

O
5

P
8

5 6 7

74

103 6 63

33 5 52

Uniform Cost

n q

- (A)

A (B C D)

B (C D E)

C (D E G F)

D (E G H I F)

E (G K J H I F)

G (M K J H I L N F)

M (K J H I L N F)

K (J H I L N F)

J (H I L N F)

Best First / Greedy

n q

- (A)

A (D C B)

D (H C B I)

H (C B I)

local variables n and q
between iterations

of loop block

12

A / A*

n q

- (A)

A (D C B)

D (C B H I)

C (G B H F I)

G (M B H N L F I)

M (B H N L F I)

B (E H N L F I)

E (K J H N L F I)

K (J H N L F I)

J (H N L F I)

13

Example: 8-Puzzle

4 8 2

1 6

5 3 7

1 2 3

4 5 6

7 8

Initial State Goal

Four Operators:

MoveTileUp
MoveTileDown
MoveTileLeft
MoveTileRight

(preconditions and effects)
(alternative possibilities)

14

Aside: What is a Solution?

• What is the 8-puzzle goal?

• Sometimes the path is the goal…

• What about cryptarithmetic?

• What individuates a Node?

• Searching graphs...

15

Possible Heuristic Functions

Often simplify by relaxing some constraint

h1: 3

h2: count tiles out of place

h3: sum Manhattan metric distances

16

Admissibility of A*

Some authors use “A” if not met

1) n n’  nodes, o  operators
with o(n)n’

h(n)  cost(n,o,n’) + h(n’)

Triangle inequality, Montonicity, or
Consistency

(for trees…)
17

Admissibility of A* (cont)

2) n  nodes

h(n)  h*(n)

Informally: be optimistic
(or don’t be pessimistic)

Why? Could you prove it?

Important General Principle:
Optimism Under Uncertainty

Does not depend on problem or tree!

Is “Uniform Cost” admissible?
18

We have:

Then we say

“more informed” implies “guaranteed not to search more”

A1* with heuristic fcn h1

A2* with heuristic fcn h2

A1* and A2* are admissible

A1* is more informed than A2*

iff for all non-goal nodes n

h1(n)  h2(n)

19

• Achievement or Satisfiability goals
– Goal is achieved or it is not

– Later: zero / one loss function

– Combinatorial

• Optimization goals
– Do the best you can

– Continuous loss

– Local / efficient: Gradient information

– “Convex optimization” is influential today

20

Different Search Protocols

• Satisfiability - solve the problem

– previous searches

• Optimizing - maximize utility

– alterations needed

• Satisficing - good enough optimization

– Combination; somewhat informal

Optimizing / Satisficing require some kind of metric space

U: N 

Utility function maps nodes to real numbers; higher is better

21

Locally Optimizing Search

• States have utilities

• Smoothness properties

• Want highest utility node

• Heuristic fcn can be used to compute
utility as 1/h or - h
– larger utility (smaller h) is better

– SORT still orders nodes best to worst

• Some access to the local gradient

Hill Climbing, Optimizing Beam
(steepest descent if directly using h as before)

22

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return failure;

n  Pop(q);

if n Solves P return n;

q  QF(q, Expand(n));

end

QF(a,b): Sort(Append(a,b), [])

[]=

Search Function

g - uniform cost
h - best first / greedy
f - A / A*

23

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return n;

if First(q) < n return n;

n  Pop(q);

q  QF(q, Expand(n));

end

QF(a,b): Sort(Append(a,b), h);

Delete all but best;

Locally Optimizing Search: Hill Climbing

24

Hill Climbing Difficulties

• Foothill - local maximum

• Plateau - little information

• Ridge - can’t go that way

25

An Aside
(but an important conceptual generalization)

• Note the efficiency of using local guidance
– Metric

– Smooth

– Gradient

• Conditions for global solution?
– No foothills, no plateaus, no ridges…

– Local (linearized) information
• Qualitatively correct

• Although quantitatively incorrect

• Convex Optimization
26

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return failure;

n  Pop(q);

if n Solves P return n;

q  QF(q, Expand(n));

end

QF(a,b): Sort(Append(a,b), h);

Recall Best First / Greedy

27

SEARCH(Problem P, Queuing Function QF):

local: n /* current node */

q /* nodes to explore */

q  singleton of Initial_State(P);

Loop:

if q = () return failure;

n  Pop(q);

if n Solves P return n;

q  QF(q, Expand(n));

end

QF(a,b): Sort(Append(a,b), h);

Delete all but the best k;

Beam Search w/ beam width k

28

Locally Optimizing Beam Search
w/ beam width k

• Variable “n” becomes a vector

of k nodes

• Find all descendants at once

• Sort descendant list by “h” and

delete all but the best k

• Return as in Hill Climbing using

best(n)

29

Search Properties
• Tentative (don’t throw away information)

• Irrevocable (throw away information)

• Exhaustive (will visit all nodes or find goal)

• Admissible

Depth First Breadth First Uniform Cost
Best First/Greedy A*

Hill Climbing Beam Optimizing Beam

Breadth First Uniform Cost A*

Uniform Cost A* [if consistency & optimism]

30

Non-Systematic Search:
Simulated Annealing

State
I.S. Goal

1
utility

31

Simulated Annealing

• Analogy w/ metalurgy

• Add thermal energy; noise; randomness

• Propose / accept actions probabilistically

• Initially noise / randomness dominates

• Cooling schedule: converge to determinism

• Guarantees?

• Compare random restart hill-climbing

32

