Start reading Ch. 7, 8, 9

Project topics

Course web site

http://www.cs.illinois.edu/class/cs440/

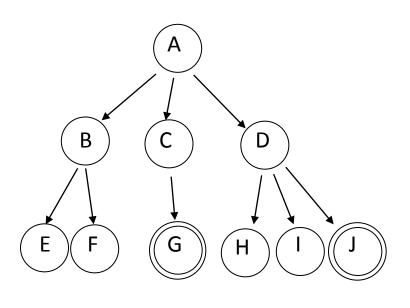
or

http://www.cs.uiuc.edu/class/fa10/cs440

Generic Search Function

```
SEARCH (Problem P, Queuing Function QF):
  local: n /* current node */
            q /* nodes to explore */
  q \leftarrow \text{singleton of Initial State}(P);
  Loop:
     if q = () return failure;
     n \leftarrow Pop(q);
     if n Solves P return n;
     q \leftarrow QF(q, Expand(n));
  end
Depth First:
              QF(old, new): Append(new, old);
Breadth First: QF(old, new): Append(old, new);
```

Sample Search Tree



Depth First

n q (between iterations)

- (A)

A (B C D)

B (E F C D)

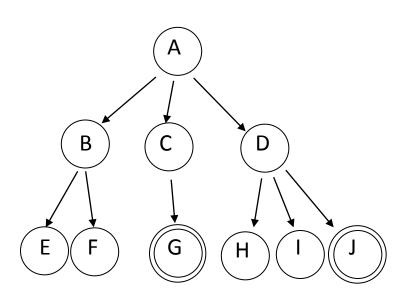
E (F C D)

F (C D)

 $C \qquad (G D)$

G (D)

Sample Search Tree



Breadth First

n q

- (A)

A (B C D)

B (CDEF)

C (DEFG)

D (EFGHIJ)

E (FGHIJ)

 \bullet \bullet

Costs

- Performing the search to find Goal
 - Time
 - Space
- Executing an operator in the world
- We will focus on execution cost
- We assume
 - Positive finite cost for each action
 - Finite branching factor
- Important cost functions: g, h, f

Define: $g^*(n)$ as minimum cost from root to $n \forall n \in Nodes$

Define: g(n) as an easily computable approximation to g*

How might we compute g?

Need an execution cost model for each operator

How might $g(n) \neq g^*(n)$?

In fact it is usually easy to guarantee $g(n) = g^*(n)$ (especially for trees!)

Note the node alone determines which operators can apply next (First Order Markov: history is unimportant to world dynamics

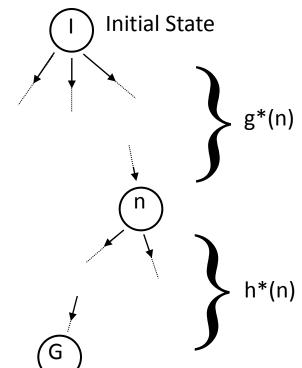
– more later)

Define: $h^*(n)$ as minimum cost from n to a goal $\forall n \in Nodes$

Define: h(n) as an easily computable approximation to h*

h is called a "heuristic function"

Define: f(n) as g(n) + h(n)



Lowest cost solution constrained through n

f(n) approximates this

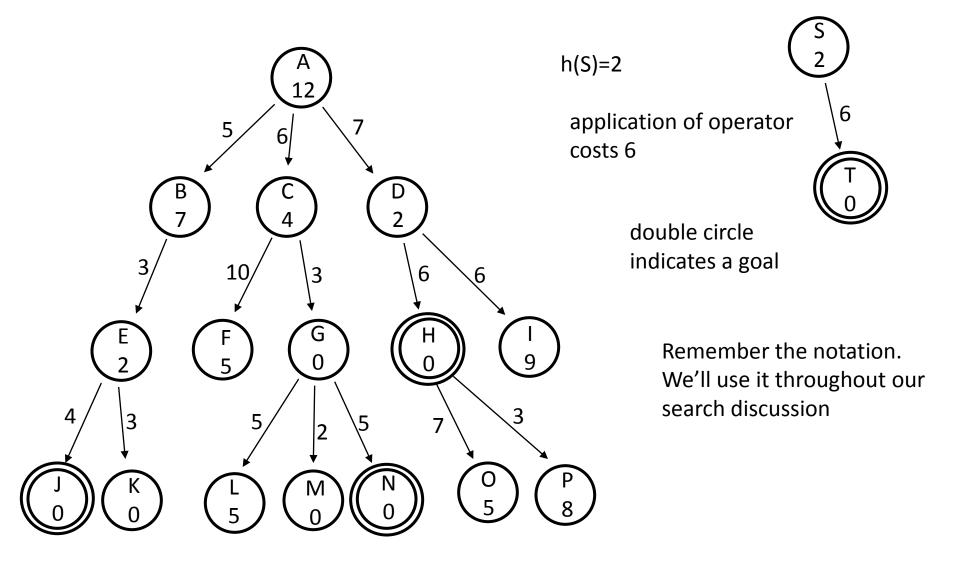
A search algorithm (together with its heuristic function if needed) is *admissible* iff for all search trees:

- A) If there exists a goal, the search will not fail.
- B) If there are multiple goals the search will find the best (least expensive to execute) goal.

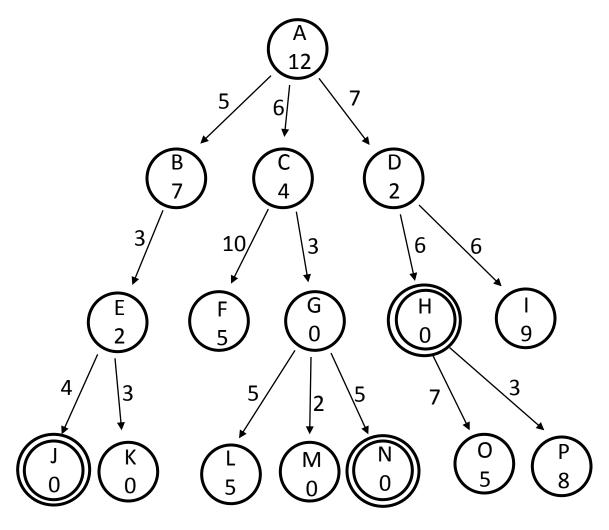
Search Function

```
SEARCH (Problem P, Queuing Function QF):
  local: n /* current node */
              q /* nodes to explore */
  q \leftarrow \text{singleton of Initial State(P)};
  Loop:
      if q = () return failure;
     n \leftarrow Pop(q);
     if n Solves P return n;
     q \leftarrow QF(q, Expand(n));
  end
QF(a,b): Sort(Append(a,b), [ ])
  [ ]=
           g \rightarrow uniform cost
           h \rightarrow best first / greedy
           f \rightarrow A/A^*
```

Complete Search Tree



Complete Search Tree



Uniform Cost

n q

(A)

A (B C D)

B (C D E)

 $C \qquad (DEGF)$

D (EGHIF)

E (GKJHIF)

G (MKJHILNF)

M (KJHILNF)

K (JHILNF)

(HILNF)

Uniform Cost

local variables n and q between iterations of loop block

Best First / Greedy

```
n q
```

- (A)

A (D C B)

D (H C B I)

H (C B I)

n q

(A)

A (B C D)

B (C D E)

C (D E G F)

D (EGHIF)

E (GKJHIF)

G (MKJHILNF)

M (KJHILNF)

K (JHILNF)

J (HILNF)

```
A / A*
```

n q

- (A)

A (D C B)

D (C B H I)

C (G B H F I)

G (MBHNLFI)

M (BHNLFI)

B (EHNLFI)

E (KJHNLFI)

K (JHNLFI)

J (HNLFI)

Example: 8-Puzzle

4	8	2
1	6	
5	3	7

1	2	3
4	5	6
7	8	

Initial State

Goal

Four Operators:

MoveTileUp MoveTileDown MoveTileLeft MoveTileRight

(preconditions and effects) (alternative possibilities)

Aside: What is a Solution?

- What is the 8-puzzle goal?
- Sometimes the path is the goal...
- What about cryptarithmetic?
- What individuates a Node?
- Searching graphs...

Possible Heuristic Functions

Often simplify by relaxing some constraint

h₁: 3

h₂: count tiles out of place

h₃: sum Manhattan metric distances

Admissibility of A*

Some authors use "A" if not met

1) \forall n \forall n' \in nodes, \forall o \in operators with o(n) \rightarrow n'

$$h(n) \leq cost(n,o,n') + h(n')$$

Triangle inequality, Montonicity, or Consistency (for trees...)

Admissibility of A* (cont)

2) \forall n \in nodes

$$h(n) \leq h^*(n)$$

Informally: be optimistic (or don't be pessimistic) Why? Could you prove it?

Important General Principle: Optimism Under Uncertainty

Does not depend on problem or tree!

Is "Uniform Cost" admissible?

We have:

A₁* with heuristic fcn h₁

A₂* with heuristic fcn h₂

A₁* and A₂* are admissible

Then we say

 A_1^* is more informed than A_2^*

iff for all non-goal nodes n

$$h_1(n) > h_2(n)$$

"more informed" implies "guaranteed not to search more"

- Achievement or Satisfiability goals
 - Goal is achieved or it is not
 - Later: zero / one loss function
 - Combinatorial
- Optimization goals
 - Do the best you can
 - Continuous loss
 - Local / efficient: Gradient information
 - "Convex optimization" is influential today

Different Search Protocols

- Satisfiability solve the problem
 - previous searches
- Optimizing maximize utility
 - alterations needed
- Satisficing good enough optimization
 - Combination; somewhat informal

Optimizing / Satisficing require some kind of metric space

 $U: \mathbb{N} \to \mathfrak{R}$

Utility function maps nodes to real numbers; higher is better

Locally Optimizing Search

- States have utilities
- Smoothness properties
- Want highest utility node
- Heuristic fcn can be used to compute utility as 1/h or - h
 - larger utility (smaller h) is better
 - SORT still orders nodes <u>best</u> to <u>worst</u>
- Some access to the local gradient

Hill Climbing, Optimizing Beam

(steepest descent if directly using h as before)

Search Function

```
SEARCH (Problem P, Queuing Function QF):
  local: n /* current node */
             q /* nodes to explore */
  q \leftarrow \text{singleton of Initial State(P)};
  Loop:
     if q = () return failure;
     n \leftarrow Pop(q);
     if n Solves P return n;
     q \leftarrow QF(q, Expand(n));
  end
QF(a,b): Sort(Append(a,b), [ ])
  [ ]=
          g - uniform cost
          h - best first / greedy
          f - A / A*
```

Locally Optimizing Search: Hill Climbing

Hill Climbing Difficulties

Foothill - local maximum

Plateau - little information

Ridge - can't go that way

An Aside

(but an important conceptual generalization)

- Note the efficiency of using local guidance
 - Metric
 - Smooth
 - Gradient
- Conditions for global solution?
 - No foothills, no plateaus, no ridges...
 - Local (linearized) information
 - Qualitatively correct
 - Although quantitatively incorrect
- Convex Optimization

Recall Best First / Greedy

Beam Search w/ beam width k

Locally Optimizing Beam Search

w/ beam width k

- Variable "n" becomes a vector of k nodes
- Find all descendants at once
- Sort descendant list by "h" and delete all but the best k
- Return as in Hill Climbing using best(n)

Search Properties

Tentative (don't throw away information)

Depth First
Best First/Greedy

Breadth First

Uniform Cost

t First/Greedy A*

• Irrevocable (throw away information)
Hill Climbing Beam Optimizing Beam
Optimizing Beam

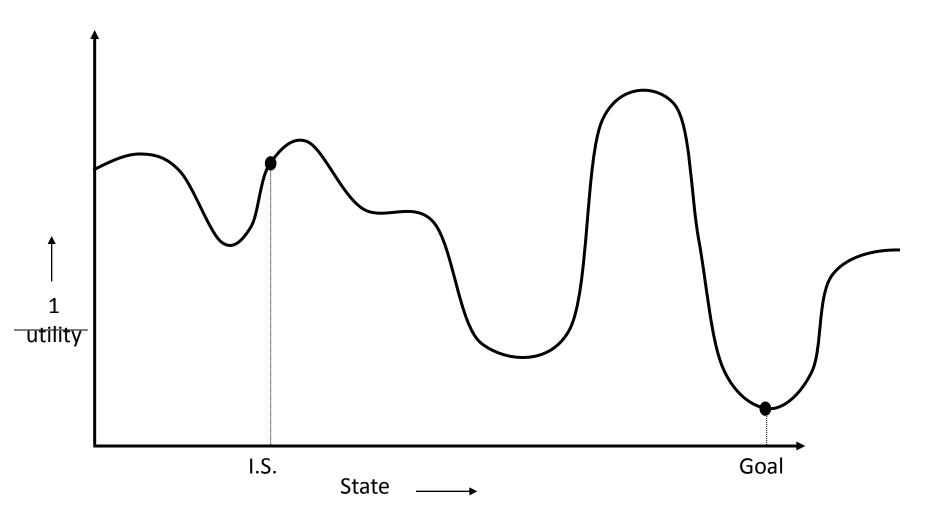
• Exhaustive (will visit all nodes or find goal)

Uniform Cost

A* [if consistency & optimism]

Admissible

Non-Systematic Search: Simulated Annealing



Simulated Annealing

- Analogy w/ metalurgy
- Add thermal energy; noise; randomness
- Propose / accept actions probabilistically
- Initially noise / randomness dominates
- Cooling schedule: converge to determinism
- Guarantees?
- Compare random restart hill-climbing