Announcements

- Final 7-8:15 PM, Wed. 12/15 here
- Q/A session 11-noon Mon. 12/13 2405SC
- Projects (for 4 credits) due Tue. 12/7
 - Code
 - Sample I/O (if it doesn't work, say so)
 - Paper discussing
 - What you did & why
 - What you learned
 - How you would do it differently given...

VC Dimension of a Concept Class

- Can be challenging to prove
- Can be non-intuitive
- Signum($sin(\omega \cdot x)$) on the real line
- Convex polygons in the plane

Learnability

- Often the hypothesis space (or concept class) is syntactically parameterized
 - n-Conjuncts, k-DNF, k-CNF, m of n, MLP w/k units,...
- The concept class is *PAC learnable* if there exists an algorithm whose running time grows no faster than polynomially in the natural complexity parameters: $1/\epsilon$, $1/\delta$, others
- Clearly, polynomially-bounded growth in the minimum number of training examples is a necessary condition.

Suppose...

- All h∈H are very low accuracy, say < 0.1% correct
- VC(H) is 100
- Training set S contains 80 labeled examples

What's the probability that an arbitrary h gets the first training example right?

What is the best some h∈H can possibly do on all 80 elements of S?

Will this h work well in general?

log(labelings) vs. |S|

Back to Perceptrons

(linear threshold units, linear discriminators)

- If there is one perceptron, there are many
- Are some better?
- Is one best?
- Can we tell?
- Can we find it?

Why are Large Margins Better?

- Classification is more robust / stable
 - Small changes to training examples
 - Re-sampling training data
 - New examples
- Lower expressiveness / capacity
 - The larger the margin
 - the fewer the hypothesis choices given the data
 - the less the symmetric difference of similar hypotheses
 - "Fat Shattering" dimension rather than Shattering & VC dimension
- Contingent on choice of distance metric also approximately measuring confidence
- What choices for distance? Many, but little guidance...
- We do not choose the margin it is a learning bias
 - Possibly: Train, Measure margin, Calculate significance(?)
 - But bounds are loose; calculations cannot be trusted
 - Rather large margin considerations
 - suggest learning algorithms
 - forms a well-defined, well-motivated learning bias
 - Bias is parameterized by distance choice and (oddly) by training examples

Consider a Perceptron for Handwritten Digit Recognition

- Pixel input, e.g.:
- 32 x 32 x 8
- x = 1024 features / dimensions, each 256 values
- Generic ANNs work poorly
- Specially designed ANNs work very well
- Multi-class from binary
 - Ten index classifiers
 - All pairs w/ voting
 - Four base 2 encoders
 - Consider "3" vs. "6"
- Will a perceptron work well? Why?

What Determines the Maximum Margin Separator?

- Only the nearest / most constraining points (support vectors)
- A learner that finds them is called a Support Vector Machine (SVM)
- Finding them is a quadratic programming optimization problem
- There are efficient iterative solutions given certain conditions
- Note class density estimation is no longer necessary
- Maximizing margin minimizes risk, assuming...
- Many extensions
 - Noise, outliers, non-separable classes, imbalanced training...
 - Soft margins, margin distributions, asymmetric margins...

Kernel Spaces: Better Distance Metrics

- Instead of adding perceptron layers, choose a better distance metric
- What???
- Want 7's to be close, 8's to be close but far from 2's, etc.
- Image distance as combination of independent pixel distances does not work well
- What are we missing?
 - Pixels do not contribute independently
 - Must appreciate interactions among pixels

Kernel Methods

- Map to a new higher dimensional space
 - Can be very high
 - Can be infinite
- Kernel functions
 - Introduce high dimensionality
 - Computation is independent of dimensionality
 - Defined w/ dot product of input image vectors
 (information on the Cosine between image vectors)
- A kernel function defines a distance metric over space of example images

Mercer's Condition / Representer Theorem

- <Kernel matrix is positive semidefinite>
- The desired hyperplane can be represented as

$$\sum_{i=1}^{m} \alpha_i K(\mathbf{s}_i, \mathbf{x})$$

Linear weighted sum of similarities to support vectors

- Kernel defines a distance metric
- The hypothesis space is represented efficiently by using some of the training examples – the support vectors

SVMs for Digit Images

- $K(x,y) = (x \cdot y)^3 \text{ or } (x \cdot y + 1)^3$
- Dot product → scalar; cube it Consider how this works...
- Before 32² features (or about 10³)
- Now $\sim (32^2)^3$ features (or about 10^9)
- New Feature = monomial = correlation among three pixels
- VC(lin sep) ~ # dimensions
- Overfitting problem?
 - Not if the margin is large
 - Monitor number of support vectors

Distinguishing Handwritten Seven's vs. Two's and Eight's

Handwritten 32 x 32 gray scale pixels

Mercer Kernels

Usually start with a kernel rather than features

$$(s \cdot x)^d$$

Homogeneous polynomials

$$(s \cdot x + 1)^d$$

 $(s \cdot x + 1)^d$ Complete polynomials

Exp(- $||s-x||^2/2 \sigma^2$)Gaussian / RBF

$$K + k$$

$$c \cdot K$$

$$K + c$$

$$K \cdot k$$

Problems

SVMs & statistical learning generally

- Little information from each training example
 - Signal must show through the noise
 - Need many training examples
 - Thousands of are needed for handwritten digits
- Much information is ignored (weak bias vocabulary)
- Compare w/ humans
 - Novel simple shape of similar complexity
 - Master with several tens (perhaps a hundred) training examples
 - Exceedingly small non-fatigue error rate

Two Related Classification Problems

Two Related Classification Problems

Two Related Classification Problems

To an SVM these are the *same problem*Apparently the SVM ignores information crucial to people

- Statistical machine learning
- Regularization reduce the available expressiveness
- SVMs large margin is a regularizer

Semi-Supervised Learning

- Access to
 - Some labeled training examples
 - Many more unlabeled examples
 - Often cheaper...
- Co-Training
 - Mitchell & Blum
 - Two different style learners
 - Train each on supervised set
 - Train each other on unsupervised examples
- Direct information: distribution density
- Transductive learning
 - Vapnik
 - Simpler problem than inductive (supervised) learning (?)
 - Added bias: Prefer confidence on unlabeled examples
 - Consider a SVM...

Unsupervised Learning Clustering

- Only unlabeled examples
- Learn / Guess structure of the space
- Mixture modeling
- Many techniques
- K-means, metric space
 - Popular, Simple
 - Assume K random centers
 - Assign members to clusters given the centers
 - Re-compute the centers given the members
 - Repeat