Announcements

- Final 7-8:15 PM, Wed. 12/15 here
- Q/A session 11-noon Mon. 12/13 2405SC
- Projects (for 4 credits) due Tue. 12/7
 - Code
 - Sample I/O (if it doesn't work, say so)
 - Paper discussing
 - What you did & why
 - What you learned
 - How you would do it differently given...

Computational Learning Theory How Much Data is Enough?

- Training set is evidence for which h∈H is
 - Correct: [Simple, Proper, Realizable??] learning
 - Best: Agnostic learning
- Remember: training set = labeled independent samples from an underlying population
- Suppose we perform well on the training set
- How well will perform on the underlying population?
- This is the *test accuracy* or *utility* of a concept (not how well it classifies the training set)

What Makes a Learning Problem Hard?

- How do we measure "hard"?
- Computation time?
- Space complexity?
- What is the valuable resource?
- Training examples
- Hard learning problems require more training examples
- Hardest learning problems require the entire example space to be labeled

[Simple] Learning

- PAC formulation
- Probably Approximately Correct
- Example space X sampled with a fixed but unknown distribution D
- Some target concept h*∈H is used to label an iid (according to ①) sample S of N examples
- Finite H
- Algorithm: return any h∈H that agrees with all N training examples S |S| = N
- Choose N sufficiently large that with high confidence (1- δ) h has accuracy of at least 1- ϵ 0 < ϵ , δ << 1

$$N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right)$$

Simple Learning (simple derivation)

- What is the probability that a bad hypothesis looks good? (need to bound this to be $\leq \delta$)
 - Bad h: true error of h > ε
 - Looks good: correct on our training set of N examples
- Hypothesis h, $h^* \in \mathbf{H}$ and $x \in \mathbf{X}$ drawn with \mathfrak{D}
 - h is bad: $Pr_{\mathfrak{D}}(h(x) \neq h^*(x)) > \varepsilon$
 - h looks good on **S**: $\forall s \in S$ h(s) = h*(s) |S| = N
- What is
 - Probability of bad h getting a single x ~ X_☉ correct?
 - $\operatorname{Pr}_{\mathfrak{D}}(h(x) = h^*(x)) \leq 1-\varepsilon$
 - Probability of two $x \sim X_{\odot}$ correct?
 - $Pr_{\mathfrak{D}}(h(x) = h^*(x)) \le (1-ε)^2$
 - Probability of N $x \sim X_{\odot}$ correct?
 - $Pr_{Φ}(h(x) = h^*(x)) ≤ (1-ε)^N$

Simple Learning (simple derivation)

- Probability of N $x \sim \mathbf{X}_{\odot}$ correct from bad h is $\Pr_{\odot}(h(x) = h^*(x)) \leq (1-\epsilon)^N$
- This bounds prob. of a single bad h masquerading as good on N – not enough; too weak...
- We must limit that ANY h ∈ H tricks us
- These probabilities can be no worse than exclusive union bound (very useful): Pr(A ∨ B) ≤ Pr(A) + Pr(B)
- Prob. that any bad $h \in H$ masquerades as good is less than... $|H| (1-\epsilon)^N$ (can't be any more than |H| bad hypotheses...)
- We want to be at least 1δ confident that this does *not* happen
- It is sufficient that $|H| (1-\epsilon)^N \le \delta$ (the rest is just math...) [solve for N one more little trick...]

Simple Learning

(simple derivation)

It is sufficient that

$$|H| (1-\epsilon)^N \le \delta$$
 Or
$$\ln |H| + N \cdot \ln (1-\epsilon) \le \ln \delta$$

- Recall $e^{-y} > 1-y$ (for y > 0) so $\ln (1-\epsilon) < -\epsilon$ and substituting gives a safer δ
- It suffices that $\ln |H| N \cdot \epsilon \le \ln \delta$

Or
$$N \ge (\ln \delta - \ln |H|) / -\epsilon$$

Or
$$N \ge (1/\epsilon) \left(-\ln \delta + \ln |H|\right)$$

Or
$$N \ge (1/\epsilon) (\ln (1/\delta) + \ln |H|)$$
 (very loose bound)

See Text section 18.5

Agnostic Learning

- Same thing but no guarantee h*∈H
- Possibly, no h is consistent over S
- With confidence at least 1- δ , find an h that is no more than ϵ worse than the best h \in H.
- Bernoulli events: h's error rate on S (|S|=N);
 (like repeated coin flips, Pr(h wrong) is coin weighting)
 relate sample error rate to the true error rate
- Chernoff bound for a sequence of N Bernoulli events:

$$P(\mu_S > \mu_D + \varepsilon) \le e^{-2N\varepsilon^2}$$

 This bounds the probability that the sample accuracy of an arbitrary h evaluated on S is very misleading:

$$P(error_{S}(h) > error_{D}(h) + \varepsilon) \le e^{-2N\varepsilon^{2}}$$

 We can again bound the probability that any one has a misleading error:

$$P((\exists h \in H)error_{S}(h) > error_{D}(h) + \varepsilon) \leq |H|e^{-2N\varepsilon^{2}}$$

• We need this to be bounded by δ :

$$P((\exists h \in H)error_{S}(h) > error_{D}(h) + \varepsilon) \leq |H|e^{-2N\varepsilon^{2}} \leq \delta$$

Solving for N:

$$N \ge \frac{1}{2\varepsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$

Intuition for Why it Works

- "Choose N sufficiently large that with confidence of at least (1- δ), h has an accuracy of at least (1- ϵ)."
- In some regions of X we don't care how well h performs
- h need be close only where it matters
- $|S| = N \Rightarrow D_S$ approximates \mathfrak{D} such that:
 - Where D_S is uncertain, $Pr_{\mathfrak{D}}(x)$ is low
 - Where $Pr_{\mathfrak{D}}(x)$ is high, D_{S} approximates \mathfrak{D} well

What about Infinite H?

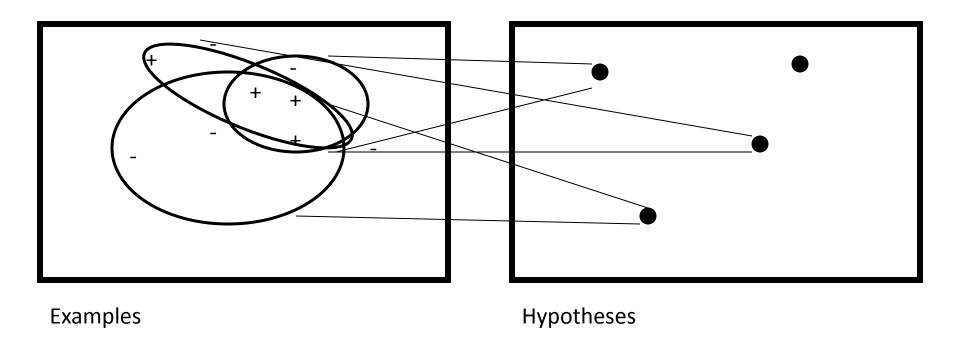
- Essentially, VC(H) plays the role of ln | H |
- For learning w/ finite H:

$$N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right)$$

For learning w/ infinite H:

$$N \ge \frac{c}{\varepsilon} \left(\ln \frac{1}{\delta} + VC(H) \cdot \ln \frac{1}{\varepsilon} \right)$$

Hypotheses as Partitioning Functions $h_i:X \longrightarrow \{+,-\}$



Given a set of n labeled examples, is there a hypothesis consistent with it?

Suppose we change the labels – is there still a consistent hypothesis?

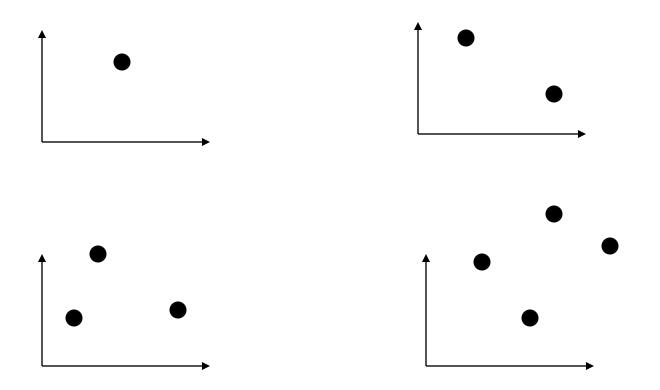
What is the largest n for which the answer is "yes"?

This is the Vapnik-Chervonenkis dimension of the hypothesis space VC(H)

Capacity & VC Dimension

- VC is most common but there are other measures of *capacity*
- VC(H) is the cardinality of the largest set of examples shattered by H
- An example set is shattered by a hypothesis set iff every classification labeling assignment of the examples, is consistent with some element of H

2d Perceptron VC Dimension



Thus the VC dimension of a 2-d perceptron is 3

The largest set of points that can be labeled arbitrarily

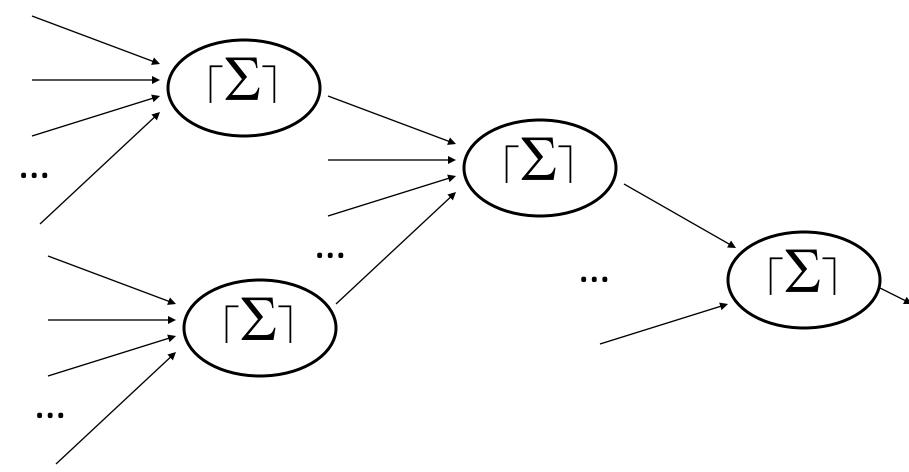
Note infinite |H| but low expressiveness

Examples of VC Dimensions

- Intervals on the real line
- 2
- Linear half-spaces in the plane
- 3
- d dimensional hyperplane
- d+1
- Axis-aligned rectangles in the plane
- 4
- Feed forward artificial neural net
- O(v·s·log(s))
 s units; v is VC of component

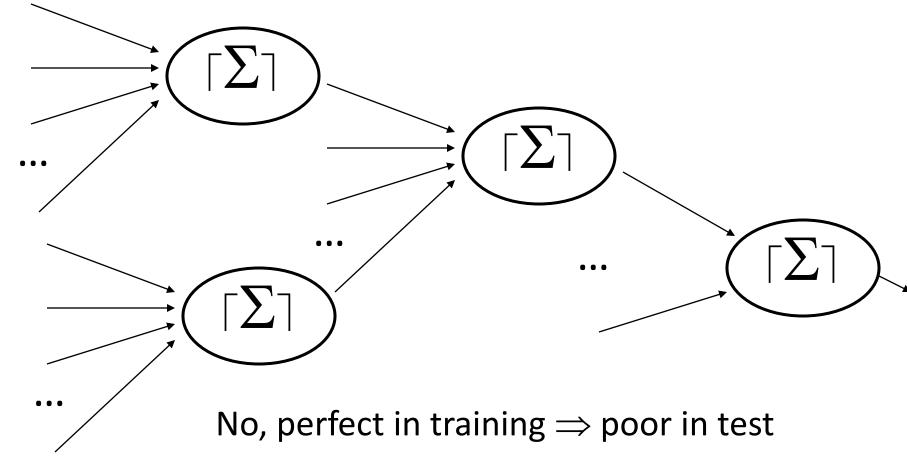
With enough units, an ANN (MLP) can learn any assignment of labels

(is this a good thing?)



With enough units, an ANN (MLP) can learn any assignment of training labels

Is this a good thing?



VC Dimension of a Concept Class

- Can be challenging to prove
- Can be non-intuitive
- Signum($sin(\omega \cdot x)$) on the real line
- Convex polygons in the plane

Learnability

- Often the hypothesis space (or concept class) is syntactically parameterized
 - n-Conjuncts, k-DNF, k-CNF, m of n, MLP w/k units,...
- The concept class is *PAC learnable* if there exists an algorithm whose running time grows no faster than polynomially in the natural complexity parameters: $1/\epsilon$, $1/\delta$, others
- Clearly, polynomially-bounded growth in the minimum number of training examples is a necessary condition.