Announcement

* Homework available on web site
Naive Bayes and Decision Trees

* Relevant Talk tomorrow (Friday)
Prof. Jeff Siskind Purdue
Embodied Intelligence
3405 SC, 2PM

Perceptron Decision Boundary

Compare weighted sum of inputs to a
threshold Z

Without loss of generality n

set x,= -1 then w,, is O ZWi -X; >0
i=0
This defines a decision surface n
ZWi X, =wW-X=0
=0

Which is the equation of
a hyperplane

Perceptron Learning

(Widrow-Hoff or delta rule)

percep,,(x) assighs +or1l ifw-x>0 (vectordot product)
else it assigns —or 0O

err = label(x) — percep,,(x)
O: correct -1:false pos 1:false neg

Here, false neg: w-x<0 butitshouldbe>0
loss = distance from boundary = -err w- x
Want to adjust w;’s to reduce this loss

Loss fcn gradient is direction of
greatest increase in loss with w

Want the opposite: step w

o _ Percep,,
in direction -V, loss

+

° X+

Perceptron Learning

(Widrow-Hoff or delta rule)

Loss function = -err w- X

Want the opposite: step w
in direction -V, loss

What is V, loss?

View -errw:x asafunction of w

V,(-errw-x) = -errx

So -V, (-errw-x) = errx W
Update w according to:

Aw = o err X
where a is a learning rate Percep,,

° X+

Perceptron Learning

(Widrow-Hoff or delta rule)

Choose a learning rate o
Compute Aw = a err X

Add Aw tow

Perceptron Learning

(Widrow-Hoff or delta rule)
Choose a learning rate a; initialize w arbitrarily (small works best)
Compute Aw = a err X
Add Aw to w
Repeatedly cycle through training examples

Learn (always and only) on errors

Percep,, \ -~

New perceptron rotates to reduce error
If x were a false positive...

Perceptron Learning

(Widrow-Hoff or delta rule)

If the points are linearly separable, the algorithm
a) will halt
b) will find a separator

(The celebrated Perceptron Convergence Theorem)

Choosing a wisely will speed convergence

If the points are not linearly separable, the algorithm may not halt.
WHY?

Bad if there is noise / uncertainty

First possibility: decay a (as in RL)

Better: accumulate Aw over an epoch
(one pass through the training set)

Epoch Perceptron Learning

Choose a convergence criterion (#epochs, min |Aw]|, ...)
Choose a learning rate a, an initial w

Repeat until converged:

Aw = zxoc err x (sum over training set holding w)

W w+Aw (update with accumulated changes)
Now it always converges

regardless of o (will influence the rate)

Whether or not training points are linearly separable

But it may not result in the fewest misclassified x’s

WHY?
(hint: what are we optimizing?)

Generative vs. Discriminative

* Isthe perceptron generative or discriminative?
— Models the decision boundary
— Classify based on boundary side
— Generally Boolean output concepts: assigns {+, -}

* Naive Bayes is a generative classifier
— Models membership in each label class
— Classify based on goodness of fit
— Works fine with more class labels
* Multi-class with discriminative learners

— One vs. All (set of index functions)
— All Pairs (vote)
— List or Tree of distinctions

Features

Each input is a vector of features
— Set of name / value pairs
— Sometimes “attributes”
— Defines the example space

Must encode events to be classified

Aim for minimally adequate encoding
— Asymetric “loss” for wrong feature choices
— “Price is Right”
Perceptron
— Real feature values
— Finite number
— Fewer — less risk of overfitting
— Too few — cannot adequately capture the target concept

Classifying Text
Simple NLP

Distinguish text articles

— Dog training vs. lraq war

— Blog vs. News

— Spam vs. Useful email

— Fox vs. CNN

— Fed will raise prime vs. Fed will not
Machine learning is best

— For simple questions

— Would be difficult to program directly
Nuanced deep understanding may be in the future...

Choose features wisely: success vs. failure

Bag of Words

* Text article is a sequence of words and
punctuation

* 10,000 - 50,000 common words in English
* For simple problems: Bag of Words

— No sequence information

— Bag is like a set remembering repetition

— Text representation = count of occurrences of
each word

Bag of Words / Stemming

“Dogs and cats aren’t natural enemies. A dog may chase a cat in fun but the
cat is not eaten and seldom even killed.”

Bag of Words Representation of Text

Naive:
a:2 and:2 arent:1 dogs:1 dog:1..democracy:O0 ...

sparse vector notation; missing word — 0

Simple stemming:
a:2 dog:2 cat:3 not: 1 kill: 1 ...

More aggressive stemming:
a:2 be:2 not:2..

Train a perceptron (note very high dimensional space)

Perhaps we should exclude certain words / types...

Perceptron Learning Algorithm

Very limited expressiveness
XOR on two Booleans:

If only we could stack them
What functions could we represent?

Limited Expressiveness of Perceptrons

XOR on two Booleans:

Two important approaches:

— Stacking them into multiple layers
— Kernel methods

What functions can we represent?
How expressive is our hypothesis space?
How hard is a learning problem?

Artificial Neural Networks:

multi-layer perceptrons
(can we represent XOR?)

i
TP em
=

Artificial Neural Networks:
multi-layer perceptrons

Add more levels for more
expressiveness?

\
/’
7T =@

/ \
—@ B
/ No, but other reasons

(“deep” learning)

Can We Still Learn Efficiently?

(is there a generalized perceptron convergence theorem)

Now any assignment of labels (any function)
vee can be represented
(Is this a good thing?)

No*

 Minsky and Papert suspected there was not in
Perceptrons (1969)

This largely killed off research interest

(for nearly 20 years)

* Minsky and Papert were right

* but for a slightly modified linear device the
answer becomes Yes!

Why “No”?

T

/ @ Threshold or step fcn T

/ -

Sigmoid
(differentiable)

Back-Propogation

Hinton, Rumlehart,...

Common sigmoid: g(x) = (1+eX)?
Then g’ = g(1-g)

Compute Aw = err g’ x

g’ apportions the error according to each unit’s
ability to influence the error

This is the missing factor in our weight update
expression compared to eqn. 18.11

Section 18.7.4 explains it well

Computational Learning Theory How Much
Data is Enough?

Training set is evidence for which heH is
— Correct: [Simple, Proper, Realizable??] learning
— Best: Agnostic learning

Remember: training = labeled independent sampling
from an underlying population

Suppose we perform well on the training set
How well will perform on the underlying population?

This is the test accuracy or utility of a concept (not
how well it classifies the training set)

What Makes a Learning Problem Hard?

* How do we measure “hard”?
 Computation time?

e Space complexity?

* What is the valuable resource?
* Training examples

* Hard learning problems require more training
examples

* Hardest learning problems require the entire
example space to be labeled

Simple Version

Finite hypothesis space

One of heH actually generates the labels
How hard is it to find?

Impossible!

What if we allow approximation?

— Settle for accuracy 1-¢

Still Impossible!

What if we allow occasional error >1-¢?
— Settle for high confidence 1-0

Now Possible.

[Simple] Learning

PAC formulation
Probably Approximately Correct

Example space X sampled with a fixed but unknown
distribution 9

Some target concept h*eH is used to label an iid
(according to D) sample S of N examples

Finite H
Algorithm: return any heH that agrees with all N training
examplesS |[S| =N

Choose N sufficiently large that with high confidence (1-0)
h has accuracy of atleast 1-¢ 0<¢g,0<<1

N 2£(Ini+ln\H\j
g %)

