Announcement

- Homework available on web site Naïve Bayes and Decision Trees
- Relevant Talk tomorrow (Friday)
 - Prof. Jeff Siskind Purdue
 - Embodied Intelligence
 - 3405 SC, 2PM

Perceptron Decision Boundary

Compare weighted sum of inputs to a threshold

$$\sum_{i=1}^{n} w_i \cdot x_i > \theta$$

Without loss of generality set $x_0 = -1$ then w_0 is θ

$$\sum_{i=0}^{n} w_i \cdot x_i > 0$$

This defines a decision surface

$$\sum_{i=0}^{n} w_i \cdot x_i = \mathbf{w} \cdot \mathbf{x} = 0$$

Which is the equation of a hyperplane

(Widrow-Hoff or delta rule)

```
percep_{\mathbf{w}}(\mathbf{x}) assigns + or 1
                                    if \mathbf{w} \cdot \mathbf{x} > 0 (vector dot product)
      else it assigns — or 0
err = label(x) - percep_w(x)
 0: correct -1: false pos 1: false neg
Here, false neg: \mathbf{w} \cdot \mathbf{x} < 0 but it should be > 0
loss = distance from boundary = - \operatorname{err} \mathbf{w} \cdot \mathbf{x}
Want to adjust w<sub>i</sub>'s to reduce this loss
Loss fcn gradient is direction of
greatest increase in loss with w
Want the opposite: step w
                                              Percep<sub>w</sub>
```

in direction $-\nabla_{w}$ loss

(Widrow-Hoff or delta rule)

Loss function = $- \operatorname{err} \mathbf{w} \cdot \mathbf{x}$

Want the opposite: step \mathbf{w} in direction $-\nabla_{\mathbf{w}}$ loss

What is ∇_{w} loss?

View $-\operatorname{err} \mathbf{w} \cdot \mathbf{x}$ as a function of \mathbf{w}

$$\nabla_{\mathbf{w}} \left(- \operatorname{err} \mathbf{w} \cdot \mathbf{x} \right) = - \operatorname{err} \mathbf{x}$$

So $-\nabla_{\mathbf{w}} \left(-\operatorname{err} \mathbf{w} \cdot \mathbf{x} \right) = \operatorname{err} \mathbf{x}$

Update w according to:

 Δ **w** = α err **x** where α is a learning rate

(Widrow-Hoff or delta rule)

Choose a learning rate α

Compute $\Delta \mathbf{w} = \alpha \text{ err } \mathbf{x}$

Add $\Delta \mathbf{w}$ to \mathbf{w}

(Widrow-Hoff or delta rule)

Choose a learning rate α ; initialize **w** arbitrarily (small works best)

Compute $\Delta \mathbf{w} = \alpha \text{ err } \mathbf{x}$

Add $\Delta \mathbf{w}$ to \mathbf{w}

Repeatedly cycle through training examples

Learn (always and only) on errors

New perceptron rotates to reduce error If **x** were a false positive...

(Widrow-Hoff or delta rule)

If the points are linearly separable, the algorithm

- a) will halt
- b) will find a separator

(The celebrated Perceptron Convergence Theorem)

Choosing α wisely will speed convergence

If the points are not linearly separable, the algorithm may not halt.

WHY?

Bad if there is noise / uncertainty

First possibility: decay α (as in RL)

Better: accumulate $\Delta \mathbf{w}$ over an *epoch* (one pass through the training set)

Epoch Perceptron Learning

Choose a convergence criterion (#epochs, min $|\Delta \mathbf{w}|$, ...) Choose a learning rate α , an initial \mathbf{w}

Repeat until converged:

$$\Delta \mathbf{w} = \sum_{\mathbf{x}} \alpha \operatorname{err} \mathbf{x}$$
 (sum over training set holding \mathbf{w})

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$
 (update with accumulated changes)

Now it always converges

regardless of α (will influence the rate)

Whether or not training points are linearly separable

But it may not result in the fewest misclassified x's

WHY?

(hint: what are we optimizing?)

Generative vs. Discriminative

- Is the perceptron generative or discriminative?
 - Models the decision boundary
 - Classify based on boundary side
 - Generally Boolean output concepts: assigns {+, -}
- Naïve Bayes is a generative classifier
 - Models membership in each label class
 - Classify based on goodness of fit
 - Works fine with more class labels
- Multi-class with discriminative learners
 - One vs. All (set of index functions)
 - All Pairs (vote)
 - List or Tree of distinctions
 - **—** ...

Features

- Each input is a vector of features
 - Set of name / value pairs
 - Sometimes "attributes"
 - Defines the example space
- Must encode events to be classified
- Aim for minimally adequate encoding
 - Asymetric "loss" for wrong feature choices
 - "Price is Right"
- Perceptron
 - Real feature values
 - Finite number
 - Fewer → less risk of overfitting
 - Too few → cannot adequately capture the target concept

Classifying Text Simple NLP

- Distinguish text articles
 - Dog training vs. Iraq war
 - Blog vs. News
 - Spam vs. Useful email
 - Fox vs. CNN
 - Fed will raise prime vs. Fed will not
- Machine learning is best
 - For simple questions
 - Would be difficult to program directly
- Nuanced deep understanding may be in the future...
- Choose features wisely: success vs. failure

Bag of Words

- Text article is a sequence of words and punctuation
- 10,000 50,000 common words in English
- For simple problems: Bag of Words
 - No sequence information
 - Bag is like a set remembering repetition
 - Text representation = count of occurrences of each word

Bag of Words / Stemming

"Dogs and cats aren't natural enemies. A dog may chase a cat in fun but the cat is not eaten and seldom even killed."

Bag of Words Representation of Text

```
Naive:
```

```
a: 2 and: 2 arent: 1 dogs: 1 dog: 1 ... democracy: 0 ...
```

sparse vector notation; missing word $\rightarrow 0$

Simple stemming:

```
a: 2 dog: 2 cat: 3 not: 1 kill: 1 ...
```

More aggressive stemming:

```
a: 2 be: 2 not: 2 ...
```

Train a perceptron (note very high dimensional space)

Perhaps we should exclude certain words / types...

Perceptron Learning Algorithm

- Very limited expressiveness
- XOR on two Booleans:

- If only we could stack them
- What functions could we represent?

Limited Expressiveness of Perceptrons

XOR on two Booleans:

- Two important approaches:
 - Stacking them into multiple layers
 - Kernel methods
- What functions can we represent?
- How expressive is our hypothesis space?
- How hard is a learning problem?

Artificial Neural Networks:

multi-layer perceptrons (can we represent XOR?)

Artificial Neural Networks:

multi-layer perceptrons

Can We Still Learn Efficiently?

(is there a generalized perceptron convergence theorem)

No*

- Minsky and Papert suspected there was not in Perceptrons (1969)
- This largely killed off research interest (for nearly 20 years)
- Minsky and Papert were right

* but for a slightly modified linear device the answer becomes Yes!

Why "No"?

Back-Propogation

- Hinton, Rumlehart,...
- Common sigmoid: $g(x) = (1+e^{-x})^{-1}$
- Then g' = g(1-g)
- Compute $\Delta \mathbf{w} = \alpha \text{ err g' } \mathbf{x}$
- g' apportions the error according to each unit's ability to influence the error
- This is the missing factor in our weight update expression compared to eqn. 18.11
- Section 18.7.4 explains it well

Computational Learning Theory How Much Data is Enough?

- Training set is evidence for which h∈H is
 - Correct: [Simple, Proper, Realizable??] learning
 - Best: Agnostic learning
- Remember: training = labeled independent sampling from an underlying population
- Suppose we perform well on the training set
- How well will perform on the underlying population?
- This is the *test accuracy* or *utility* of a concept (not how well it classifies the training set)

What Makes a Learning Problem Hard?

- How do we measure "hard"?
- Computation time?
- Space complexity?
- What is the valuable resource?
- Training examples
- Hard learning problems require more training examples
- Hardest learning problems require the entire example space to be labeled

Simple Version

- Finite hypothesis space
- One of h∈H actually generates the labels
- How hard is it to find?
- Impossible!
- What if we allow approximation?
 - Settle for accuracy 1-ε
- Still Impossible!
- What if we allow occasional error >1-ε?
 - Settle for high confidence 1- δ
- Now Possible.

[Simple] Learning

- PAC formulation
- Probably Approximately Correct
- Example space X sampled with a fixed but unknown distribution D
- Some target concept h*∈H is used to label an iid (according to ②) sample S of N examples
- Finite H
- Algorithm: return any h∈H that agrees with all N training examples S |S| = N
- Choose N sufficiently large that with high confidence (1- δ) h has accuracy of at least 1- ϵ 0 < ϵ , δ << 1

$$N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right)$$