
Announcement

• Homework available on web site
Naïve Bayes and Decision Trees

• Relevant Talk tomorrow (Friday)

Prof. Jeff Siskind Purdue

Embodied Intelligence

3405 SC, 2PM

1

Perceptron Decision Boundary

Compare weighted sum of inputs to a
threshold

Without loss of generality
set x0= -1 then w0 is 

This defines a decision surface

Which is the equation of

a hyperplane




n

i

ii xw
1

0
0




n

i

ii xw

0
0




xw
n

i

ii xw

2

Perceptron Learning
(Widrow-Hoff or delta rule)

w

• x +
Percepw

+

-

percepw(x) assigns + or 1 if w  x > 0 (vector dot product)
else it assigns – or 0

err = label(x) – percepw(x)
0: correct -1: false pos 1: false neg

Here, false neg: w  x < 0 but it should be > 0

loss = distance from boundary = - err w  x

Want to adjust wi’s to reduce this loss

Loss fcn gradient is direction of
greatest increase in loss with w

Want the opposite: step w
in direction -w loss

3

Perceptron Learning
(Widrow-Hoff or delta rule)

w

• x +
Percepw

+

-

Loss function = - err w  x

Want the opposite: step w
in direction -w loss

What is w loss?

View - err w  x as a function of w

w (- err w  x) = - err x

So -w (- err w  x) = err x

Update w according to:

w =  err x
where  is a learning rate

4

Perceptron Learning
(Widrow-Hoff or delta rule)

w

• x +
Percepw

+

-

Choose a learning rate 

Compute w =  err x

Add w to w

w

5

w

• x +

Percepw
+

-

Choose a learning rate ; initialize w arbitrarily (small works best)

Compute w =  err x

Add w to w

Repeatedly cycle through training examples

Learn (always and only) on errors

w

New perceptron rotates to reduce error
If x were a false positive…

Perceptron Learning
(Widrow-Hoff or delta rule)

6

If the points are linearly separable, the algorithm
a) will halt
b) will find a separator

(The celebrated Perceptron Convergence Theorem)

Choosing  wisely will speed convergence

If the points are not linearly separable, the algorithm may not halt.

WHY?

Bad if there is noise / uncertainty

First possibility: decay  (as in RL)

Better: accumulate w over an epoch
(one pass through the training set)

Perceptron Learning
(Widrow-Hoff or delta rule)

7

Choose a convergence criterion (#epochs, min |w|, …)
Choose a learning rate , an initial w

Repeat until converged:

w = x  err x (sum over training set holding w)

w  w + w (update with accumulated changes)

Now it always converges

regardless of  (will influence the rate)

Whether or not training points are linearly separable

But it may not result in the fewest misclassified x’s

WHY?
(hint: what are we optimizing?)

Epoch Perceptron Learning

8

Generative vs. Discriminative

• Is the perceptron generative or discriminative?
– Models the decision boundary
– Classify based on boundary side
– Generally Boolean output concepts: assigns {+, -}

• Naïve Bayes is a generative classifier
– Models membership in each label class
– Classify based on goodness of fit
– Works fine with more class labels

• Multi-class with discriminative learners
– One vs. All (set of index functions)
– All Pairs (vote)
– List or Tree of distinctions
– …

9

Features

• Each input is a vector of features
– Set of name / value pairs
– Sometimes “attributes”
– Defines the example space

• Must encode events to be classified
• Aim for minimally adequate encoding

– Asymetric “loss” for wrong feature choices
– “Price is Right”

• Perceptron
– Real feature values
– Finite number
– Fewer  less risk of overfitting
– Too few  cannot adequately capture the target concept

10

Classifying Text
Simple NLP

• Distinguish text articles
– Dog training vs. Iraq war

– Blog vs. News

– Spam vs. Useful email

– Fox vs. CNN

– Fed will raise prime vs. Fed will not

• Machine learning is best
– For simple questions

– Would be difficult to program directly

• Nuanced deep understanding may be in the future…

• Choose features wisely: success vs. failure

11

Bag of Words

• Text article is a sequence of words and
punctuation

• 10,000 – 50,000 common words in English

• For simple problems: Bag of Words

– No sequence information

– Bag is like a set remembering repetition

– Text representation = count of occurrences of
each word

12

Bag of Words / Stemming

“Dogs and cats aren’t natural enemies. A dog may chase a cat in fun but the
cat is not eaten and seldom even killed.”

Bag of Words Representation of Text

Naive:
a: 2 and: 2 arent: 1 dogs: 1 dog: 1 … democracy: 0 …

sparse vector notation; missing word  0

Simple stemming:
a: 2 dog: 2 cat: 3 not: 1 kill: 1 …

More aggressive stemming:
a: 2 be: 2 not: 2 …

Train a perceptron (note very high dimensional space)

Perhaps we should exclude certain words / types…
13

Perceptron Learning Algorithm

• Unlike DTs, perceptrons are learnable

• Very limited expressiveness

• XOR on two Booleans:

• If only we could stack them

• What functions could we represent?

14

Limited Expressiveness of Perceptrons

• XOR on two Booleans:

• Two important approaches:
– Stacking them into multiple layers

– Kernel methods

• What functions can we represent?

• How expressive is our hypothesis space?

• How hard is a learning problem?
15

Artificial Neural Networks:
multi-layer perceptrons
(can we represent XOR?)

…



…



…



…

16

Artificial Neural Networks:
multi-layer perceptrons

…



…



…



…

No, but other reasons
(“deep” learning)

Add more levels for more
expressiveness?

17

Can We Still Learn Efficiently?
(is there a generalized perceptron convergence theorem)

…



…



…



…

Now any assignment of labels (any function)
can be represented

(Is this a good thing?)
18

No*

• Minsky and Papert suspected there was not in
Perceptrons (1969)

• This largely killed off research interest
(for nearly 20 years)

• Minsky and Papert were right

* but for a slightly modified linear device the
answer becomes Yes!

19

Why “No”?

…



…



…

 Threshold or step fcn

Sigmoid
(differentiable)

20

Back-Propogation

• Hinton, Rumlehart,…

• Common sigmoid: g(x) = (1+e-x)-1

• Then g’ = g(1-g)

• Compute w =  err g’ x

• g’ apportions the error according to each unit’s
ability to influence the error

• This is the missing factor in our weight update
expression compared to eqn. 18.11

• Section 18.7.4 explains it well

21

Computational Learning Theory How Much

Data is Enough?

• Training set is evidence for which hH is
– Correct: [Simple, Proper, Realizable??] learning

– Best: Agnostic learning

• Remember: training = labeled independent sampling
from an underlying population

• Suppose we perform well on the training set

• How well will perform on the underlying population?

• This is the test accuracy or utility of a concept (not
how well it classifies the training set)

22

What Makes a Learning Problem Hard?

• How do we measure “hard”?

• Computation time?

• Space complexity?

• What is the valuable resource?

• Training examples

• Hard learning problems require more training
examples

• Hardest learning problems require the entire
example space to be labeled

23

Simple Version

• Finite hypothesis space
• One of hH actually generates the labels
• How hard is it to find?
• Impossible!
• What if we allow approximation?

– Settle for accuracy 1-
• Still Impossible!
• What if we allow occasional error >1-?

– Settle for high confidence 1-
• Now Possible.

24

[Simple] Learning
• PAC formulation

• Probably Approximately Correct

• Example space X sampled with a fixed but unknown
distribution D

• Some target concept h*H is used to label an iid
(according to D) sample S of N examples

• Finite H

• Algorithm: return any hH that agrees with all N training
examples S |S| = N

• Choose N sufficiently large that with high confidence (1-)
h has accuracy of at least 1- 0 < , << 1









 HN ln

1
ln

1

 25

