
Announcement

• Watch for next homework
tomorrow or Thursday on web site

• On Naïve Bayes and Decision Trees

1

Overfitting
(very important & general phenomenon!)

• Concept performs
– well on training data (drawn from X according to D)
– poorly on unseen examples of interest (same drawing)

• Excess flexibility in hypothesis space H
– Finds training set pattern not in population
– Concept selection from too little (insignificant) training data

• Confidence in selecting c  H
– Diversity of H reflects our ignorance
– Training set Z provides information
– Information(Z)  Information need(H) [>> for high confidence]

• Often Learning algorithms cannot tell
• With low confidence, expected behavior of “best” concept

(on Z) is poor on underlying population
• Extreme:

– Rote learning of training data
– No generalization 2

Overfitting

• Statistical significance of inference

• Decisions with insufficient evidence

Complexity of H vs |Z|

accuracy

On testing

On training

3

Overfitting in Decision Trees

• A rich set of tests
– Split to (nearly) homogeneity

– Accurate on training set

– Poor expected performance on new data

– Consider noise (but even w/o…)

• With limited training examples, deep decision
trees are bad
– Low confidence in lower split choices (why?)

– Hypothesis space H become too expressive

4

How to Reduce Overfitting in Decision
Trees

• Restrict the expressiveness of H
• Limit the set of tests available
• Limit the depth

– No deeper than N (say 3 or 12 or 86)
– How to choose?

• Limit the minimum number of examples used to select a
split
– Need at least M (is 10 enough? 20?)
– How to choose? (Adjust for number of tests? Their outcomes?)
– Want significance; Statistical hypothesis testing can help

• BEST: Learn an overfit tree and prune
– Partition the labeled examples
– A: training data – grow the tree
– B: pruning data – prune the tree from leaves
– What would be the pruning algorithm?

5

Important Tradeoffs

• ML: bias – variance – accuracy tradeoff
• (In Statistics: bias – variance tradeoff)
• Learner chooses c  H based on Z (training set)
• Measures of interest:

– Accuracy: c’s performance over true population
– Bias: c’s choice not due to Z
– Variance: c’s change from a re-sampled Z’

• How likely would we build a similar concept
– From a different training sample?
– From this training set used differently?
– What makes a concept similar?

6

Variance Reduction: Bagging

• General technique

• Easy, Effective, Useful

• Average over a set of quasi-independent
concepts

• Quasi-independent???

• Partition training set Z different ways

• With each, grow & prune a decision tree

• Classify new examples by vote of concepts

• “Decision Forest”

7

Cross Validation
(Popular & Useful)

• Estimating Parameters
– Classification Accuracy
– Blending or other Learning Parameters

• Partition training data into subsets for
– Training, Testing

• Each partitioning yields quasi-independent learning
• How to partition?

– Often into N sets
• N=5, 10,…
• N=|Z| (Leave One Out)

– Train on N-1 sets, Test on the remaining one
– All N ways

• Agreement is evidence for confidence
Can combine results (e.g., averaging)

8

Cross Validation
(one approach, DT training using all the data)

• Partition training set N ways

• Train on N-1, Prune on 1 to best tree

• Repeat N times

• Yield quasi-independent estimates of best tree

• Estimate best depth (poor)

• Estimate best number of leaves (better)

• Estimate a model of good decisions (best)

• Decide on a split termination (using above)

• Use all the data, stop at split termination

9

Decision Trees

• Discriminative or Generative?

• Learnability issues

• Decision lists

• Another popular classifier: perceptrons

– Neural networks

– Support Vector Machines

10

Perceptron
Linear Separator, Linear Discriminant, …

• Rosenblatt ~1960

• Analog of a neuron
McCulloch & Pitts (1943),
Hebb (1949),
Widrow (1960)…
Minsky & Papert (1969)
Rumelhart, Hinton,… ~1985

• Switching device

• Weighted sum of inputs

• Compare to threshold

…



11

Perceptron Example Space

Each inputs values n features

An input is a vector of n components

If input is a vector of Booleans

The n-dimensional Boolean hypercube

If the input is a vector of real numbers

n-dimensional real space n

12

Perceptron Decision Boundary

Compare weighted sum of inputs to a
threshold

Without loss of generality
set x0= -1 then w0 is 

This defines a decision surface

Which is the equation of

a hyperplane




n

i

ii xw
1

0
0




n

i

ii xw

0
0




xw
n

i

ii xw

13

Perceptron Hypothesis Space

• Perceptron as a classifier
– An input x is labeled

• Positive + if it is above the hyperplane,

• else Negative –

• Parameterized family of functions

• Each function: x {+,-}

• Family is parameterized by w

• So the hypothesis space is…

• The set of linearly bounded half-spaces

14

Perceptron Concepts

Given any collection of points in n

Given any assignment of + / -

For which is there a perceptron that is consistent
with them?

IFF the +’s are linearly separable from the –’s

How many such perceptrons will there be?

15

Perceptron Concepts

Even though an infinite supply of different
concepts, there are some + / - configurations
that we cannot handle

Given a perceptron, we are committed to a
labeling of all possible inputs

16

Perceptron Learning

Given a training set of linearly separable
+ / - labeled points

Can we find a consistent perceptron efficiently?

Trying out lots of w’s is not efficient

Thought question:

<How good will it be on future points?>

<Remember we do NOT care (directly) about
getting the training set right>

17

Perceptron Learning
(Widrow-Hoff or delta rule)

w

• x +
Percepw

+

-

percepw(x) assigns + or 1 if w  x > 0 (vector dot product)
else it assigns – or 0

err = label(x) – percepw(x)
0: correct -1: false pos 1: false neg

Here, false neg: w  x < 0 but it should be > 0

loss = distance from boundary = - err w  x

Want to adjust wi’s to reduce this loss

Loss fcn gradient is direction of
greatest increase in loss with w

Want the opposite: step w
in direction -w loss

18

