Announcement

- Watch for next homework tomorrow or Thursday on web site
- On Naïve Bayes and Decision Trees

Overfitting

(very important & general phenomenon!)

- Concept performs
 - well on training data (drawn from X according to \mathfrak{D})
 - poorly on unseen examples of interest (same drawing)
- Excess flexibility in hypothesis space H
 - Finds training set pattern not in population
 - Concept selection from too little (insignificant) training data
- Confidence in selecting $c \in H$
 - Diversity of H reflects our ignorance
 - Training set Z provides information
 - Information(Z) ≥ Information need(H) [>> for high confidence]
- Often Learning algorithms cannot tell
- With low confidence, expected behavior of "best" concept (on Z) is poor on underlying population
- Extreme:
 - Rote learning of training data
 - No generalization

Overfitting

- Statistical significance of inference
- Decisions with insufficient evidence

Overfitting in Decision Trees

- A rich set of tests
 - Split to (nearly) homogeneity
 - Accurate on training set
 - Poor expected performance on new data
 - Consider noise (but even w/o...)
- With limited training examples, deep decision trees are bad
 - Low confidence in lower split choices (why?)
 - Hypothesis space H become too expressive

How to Reduce Overfitting in Decision Trees

- Restrict the expressiveness of H
- Limit the set of tests available
- Limit the depth
 - No deeper than N (say 3 or 12 or 86)
 - How to choose?
- Limit the minimum number of examples used to select a split
 - Need at least M (is 10 enough? 20?)
 - How to choose? (Adjust for number of tests? Their outcomes?)
 - Want significance; Statistical hypothesis testing can help
- BEST: Learn an overfit tree and prune
 - Partition the labeled examples
 - A: training data grow the tree
 - B: pruning data prune the tree from leaves
 - What would be the pruning algorithm?

Important Tradeoffs

- ML: bias variance accuracy tradeoff
- (In Statistics: bias variance tradeoff)
- Learner chooses c ∈ H based on Z (training set)
- Measures of interest:
 - Accuracy: c's performance over true population
 - Bias: c's choice not due to Z
 - Variance: c's change from a re-sampled Z'
- How likely would we build a similar concept
 - From a different training sample?
 - From this training set used differently?
 - What makes a concept similar?

Variance Reduction: Bagging

- General technique
- Easy, Effective, Useful
- Average over a set of quasi-independent concepts
- Quasi-independent???
- Partition training set Z different ways
- With each, grow & prune a decision tree
- Classify new examples by vote of concepts
- "Decision Forest"

Cross Validation

(Popular & Useful)

- Estimating Parameters
 - Classification Accuracy
 - Blending or other Learning Parameters
- Partition training data into subsets for
 - Training, Testing
- Each partitioning yields quasi-independent learning
- How to partition?
 - Often into N sets
 - N=5, 10,...
 - N=|Z| (Leave One Out)
 - Train on N-1 sets, Test on the remaining one
 - All N ways
- Agreement is evidence for confidence Can combine results (e.g., averaging)

Cross Validation

(one approach, DT training using all the data)

- Partition training set N ways
- Train on N-1, Prune on 1 to best tree
- Repeat N times
- Yield quasi-independent estimates of best tree
- Estimate best depth (poor)
- Estimate best number of leaves (better)
- Estimate a model of good decisions (best)
- Decide on a split termination (using above)
- Use all the data, stop at split termination

Decision Trees

- Discriminative or Generative?
- Learnability issues
- Decision lists
- Another popular classifier: perceptrons
 - Neural networks
 - Support Vector Machines

Perceptron

Linear Separator, Linear Discriminant, ...

- Rosenblatt ~1960
- Analog of a neuron
 McCulloch & Pitts (1943),
 Hebb (1949),
 Widrow (1960)...
 Minsky & Papert (1969)
 Rumelhart, Hinton,... ~1985

- Switching device
- Weighted sum of inputs
- Compare to threshold

Perceptron Example Space

Each inputs values n features

An input is a vector of n components

If input is a vector of Booleans

The n-dimensional Boolean hypercube

If the input is a vector of real numbers

n-dimensional real space \Re^n

Perceptron Decision Boundary

Compare weighted sum of inputs to a threshold

$$\sum_{i=1}^{n} w_i \cdot x_i > \theta$$

Without loss of generality set x_0 = -1 then w_0 is θ

$$\sum_{i=0}^{n} w_i \cdot x_i > 0$$

This defines a decision surface

$$\sum_{i=0}^{n} w_i \cdot x_i = \mathbf{w} \cdot \mathbf{x} = 0$$

Which is the equation of a hyperplane

Perceptron Hypothesis Space

- Perceptron as a classifier
 - An input x is labeled
 - Positive + if it is above the hyperplane,
 - else Negative –
- Parameterized family of functions
- Each function: $\mathbf{x} \rightarrow \{+,-\}$
- Family is parameterized by w
- So the hypothesis space is...
- The set of linearly bounded half-spaces

Perceptron Concepts

Given any collection of points in \Re^n

Given any assignment of + / -

For which is there a perceptron that is consistent with them?

IFF the +'s are linearly separable from the -'s

How many such perceptrons will there be?

Perceptron Concepts

Even though an infinite supply of different concepts, there are some + / - configurations that we cannot handle

Given a perceptron, we are committed to a labeling of all possible inputs

Perceptron Learning

Given a training set of linearly separable + / - labeled points

Can we find a consistent perceptron efficiently?

Trying out lots of w's is not efficient

Thought question:

- <How good will it be on future points?>
- <Remember we do NOT care (directly) about getting the training set right>

Perceptron Learning

(Widrow-Hoff or delta rule)

```
percep_{\mathbf{w}}(\mathbf{x}) assigns + or 1
                                   if \mathbf{w} \cdot \mathbf{x} > 0 (vector dot product)
     else it assigns — or 0
err = label(x) - percep_w(x)
 0: correct -1: false pos 1: false neg
Here, false neg: \mathbf{w} \cdot \mathbf{x} < 0 but it should be > 0
loss = distance from boundary = - err \mathbf{w} \cdot \mathbf{x}
Want to adjust w<sub>i</sub>'s to reduce this loss
Loss fcn gradient is direction of
greatest increase in loss with w
Want the opposite: step w
                                             Percep<sub>w</sub>
 in direction -\nabla_{w} loss
```