Announcement

HW4 on BNs due today

Find a data sample that justifies the following interchange with Dr. Bayes

Is the patient male or female?

Male
then administer treatment A

Is the patient male or female?
Female
then administer treatment A

Is the patient male or female?
Unknown
then administer treatment B

How to proceed?

- Build an empirical model (well, hybrid in fact mostly analytic)
- Dr. Bayes interactions are constraints on model parameters
- Then, either
 - Choose parameters to satisfy constraints and make up data to yield these parameters
 - OR Convince ourselves of their inconsistency

Building a Model (for Dr. Bayes)

- Build! Don't just wait for an inspiration
- What are the random variables?
 - (what relevant features change across individuals?)
 - G: Gender (male / female)
 - T: Treatment (a / b)
 - I: Improvement (yes / no)(All Boolean)
- Joint has ...?
 - 8 numbers, 7 parameters

Joint Distribution

 Three Boolean random variables: Gender m/f, Treatment a/b, Improvement y/n

•	Ν	patients
		J 5. 5. 5 5 .

(y / n)	а	b
m	may / man	mby / mbn
f	fay / fan	fby / fbn

"may" is the number of males who improved after treatment "a"

divide each count by N to get estimated probabilities (sample averages) which will then sum to 1

Constraints on Parameters

- Is the patient male or female?
 Male [Female]
 then administer treatment A
- Meaning in the model?
- P(I=y | G=m, T=a) > P(I=y | G=m, T=b)
- P(I=y | G=f, T=a) > P(I=y | G=f, T=b)
- Is the patient male or female?
 Unknown
 then administer treatment B
- P(I=y | T=a) < P(I=y | T=b)

Constraints on Parameters

- P(I=y | G=m, T=a) > P(I=y | G=m, T=b)
- may / ma > mby / mb
- may / (may + man) > mby / (mby + mbn)
- P(I=y | G=f, T=a) > P(I=y | G=f, T=b)
- fay / (fay + fan) > fby / (fby + fbn)
- P(I=y | T=a) < P(I=y | T=b)
- ay / a < by / b
- Some search and arithmetic...

Dr. Bayes

- Gender m/f, Treatment a/b, Improvement y/n
- 100 patients:

_	50 m	50 f
_	50 a	50 b

(y / n)	а	b
male	25/15	5/5
female	9/1	32/8

•
$$P(y|m,a) > P(y|m,b)$$

•
$$P(y|m,a) = 25/40 = 0.625$$
 $P(y|m,b) = 5/10 = 0.5$

$$P(y|m,b) = 5/10 = 0.5$$

•
$$P(y|f,a) > P(y|f,b)$$

•
$$P(y|f,a) = 9/10 = 0.9$$

$$P(y|f,b) = 32/40 = 0.8$$

•
$$P(y|a) = 34/50 = 0.68$$

$$P(y|b) = 37/50 = 0.74$$

Simpson's "Paradox" real-world examples

- Two hospitals in a city
 - Hospital A is better for minor injuries
 - Hospital A is better for serious injuries
 - Hospital B is better if unknown
- Berkeley engineering college
 - Overall the college discriminates against females and for males in admission
 - But each department discriminates against males and for females in admission

Machine Learning

More Human Involvement

Less Human Involvement

Mostly This One Programming (?) **Rote Learning** Supervised Learning from Examples Semi-supervised Learning Learning by Analogy Learning from Observation (active learning) Data Mining / Unsupervised Learning Discovery

General Learning Paradigm

Peformance Element task is usually either

Classification or Problem Solving

Chest X-ray diag. Planning

Insurance risk eval. Network configuration

Handwritten recog. Adaptive user interface

•••

Important Distinctions and Ideas

- On line (incremental / streaming) vs. Batch
- Supervised / Unsupervised / Semi-supervised (compare w/ reinforcement learning)
- Generative vs. Discriminative
- Two Spaces for a Learner
 - Example Space all possible inputs
 - Hypothesis (concept) Space
 - All possible outputs (concepts)
 - Each partitions the input space
- Training Set for Supervised Learning

Machine Learning as an Empirically Guided Search through the Hypothesis Space

Learning Decision Trees for Classification

- Ross Quinlan
 - **–** ID3
 - C4.5
 - C5.0 (commercial product)
 - -AI/ML
- Breiman, Friedman, Olshen, & Stone
 - CART
 - Statistics

What is a decision tree?

Suppose I like circles that are red

(I might not be aware of the rule)

Features:

- Owner
 - John, Mary, Sam
- Size
 - Large, Small
- Shape
 - Triangle, Circle, Square
- Texture
 - Rough, Smooth
- Color
 - Blue, Red, Green, Yellow, Taupe

 $\forall x [Like(x) \Leftrightarrow (Circle(x) \land Red(x)]$

Decision Tree Learning by Hill Climbing

- If node is homogeneous (or good enough) then STOP
- Choose most useful test on which to split
- Recur on Children

Hypothesis space is the set of all decision trees

Training Data

+--++--+

Highly Disorganized

High Entropy

Much Information Required

Highly Organized

Low Entropy

Little Information Required

++

What makes a (test / split / feature) useful?

- Improved homogeneity
 - Entropy reduction
 - Information gain
- To evaluate a split utility
 - Measure entropy / information required before
 - Measure entropy / information required after
 - Subtract
- Expected number of bits to communicate the label of an item chosen randomly from a set

H denotes *Information Need* or *Entropy*

- $H(S) = bits required to label some x \in S$
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?

$$S_1 = +++$$

- H(S) = bits required to label some x ∈ S
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?
- What is $H(S_2)$? $S_2 = \frac{1}{12}$

- H(S) = bits required to label some x ∈ S
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?
- What is $H(S_2)$?
- What is H(S₃)?

++++++++++++

- H(S) = bits required to label some x ∈ S
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?
- What is $H(S_2)$? $S_4 = +-$
- What is $H(S_3)$?
- What is H(S₄) ?

- H(S) = bits required to label some x ∈ S
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?
- What is $H(S_2)$?
- What is H(S₃)?
- What is H(S₄) ?
- What is $H(S_5)$?

- H(S) = bits required to label some x ∈ S
- What is the upper bound if label ∈ {+,-}
- What is H(S₁) ?
- What is $H(S_2)$?
- What is H(S₃)?
- What is H(S₄) ?
- What is $H(S_5)$?
- What is $H(S_6)$?

Think of expected number of bits

 $H(S_6)$ should be closer to 0 than to 1 Information theory / coding theory is relevant

FABBAABAD

- $H(S) = bits required to label some x \in S$
- Label ∈ {A,B,C,D,E,F}, Upper bound now?
- What is $H(S_7)$?

		S = AAADABEAF	
FOR	SAY	3 7 AABBACAEB	
1011	<i>57</i> (1	AAABC	
Α	1		
В	01		
С	0000	AAAAAAA	16
D	0001	_ AAAAAA	10
F	0010	— ВВВВВВВВ	8
_ _	0011	CCDDEEFF	2222
	OOTT		

Sometimes needs 4 bits / label (worse than 3)

What is the expected number of bits?

- 16/32 use 1 bit
- 8/32 use 2 bits
- 4 x 2/32 use 4 bits

0.5(1) + 0.25(2) + 0.0625(4) + 0.0625(4) + 0.0625(4) + 0.0625(4)
= 0.5 + 0.5 + 0.25 + 0.25 + 0.25 + 0.25 = 2

$$H(S) = \sum_{v \in Labels} -Pr(v) \cdot \log_2(Pr(v))$$

Information Gain

Subtract Information required after split from before

Information required:

Before
$$H(S_b)$$

After
$$Pr(S_{a1}) \cdot H(S_{a1}) + Pr(S_{a2}) \cdot H(S_{a2}) + Pr(S_{a3}) \cdot H(S_{a3})$$

Estimate probabilities using sample counts

Information Gain =
$$\mathbf{H}(S_b) - \sum_i \mathbf{H}(S_{ai}) \frac{|S_{ai}|}{|S_b|}$$

Choosing the Most Useful Test

Estimate information gain for each test

Information Gain =
$$\mathbf{H}(S_b) - \sum_i \mathbf{H}(S_{ai}) \frac{|S_{ai}|}{|S_b|}$$

Choose the highest