
Announcement

• HW4 on BNs due today

1



Find a data sample that justifies the following 
interchange with Dr. Bayes

Is the patient male or female?

Male

then administer treatment A

Is the patient male or female?

Female

then administer treatment A

Is the patient male or female?

Unknown

then administer treatment B
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How to proceed?

• Build an empirical model (well, hybrid – in fact 
mostly analytic)

• Dr. Bayes interactions are constraints on 
model parameters

• Then, either
– Choose parameters to satisfy constraints

and
make up data to yield these parameters

– OR Convince ourselves of their inconsistency
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Building a Model
(for Dr. Bayes)

• Build!  Don’t just wait for an inspiration

• What are the random variables?

– (what relevant features change across individuals?)

– G: Gender (male / female)

– T: Treatment (a / b)

– I: Improvement (yes / no)

(All Boolean)

• Joint has …?

8 numbers, 7 parameters
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Joint Distribution

(y / n) a b

m may / man mby / mbn

f fay / fan fby / fbn

• Three Boolean random variables: Gender m/f, Treatment a/b, Improvement 
y/n

• N patients 

“may” is the number of males who improved after treatment “a”

divide each count by N to get estimated probabilities 
(sample averages) which will then sum to 1

5



Constraints on Parameters

• Is the patient male or female?
Male   [Female]
then administer treatment A

• Meaning in the model?

• P(I=y | G=m, T=a) > P(I=y | G=m, T=b)

• P(I=y | G=f, T=a) > P(I=y | G=f, T=b)

• Is the patient male or female?
Unknown
then administer treatment B

• P(I=y | T=a) < P(I=y | T=b)
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Constraints on Parameters

• P(I=y | G=m, T=a) > P(I=y | G=m, T=b)

• may / ma > mby / mb

• may / (may + man) > mby / (mby + mbn)

• P(I=y | G=f, T=a) > P(I=y | G=f, T=b)

• fay / (fay + fan) > fby / (fby + fbn)

• P(I=y | T=a) < P(I=y | T=b)

• ay / a < by / b

• Some search and arithmetic…
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Dr. Bayes

• Gender m/f, Treatment a/b, Improvement y/n

• 100 patients:
– 50 m 50 f

– 50 a 50 b

• P(y|m,a)  >?  P(y|m,b)

• P(y|m,a) = 25/40 = 0.625 P(y|m,b) = 5/10 = 0.5

• P(y|f,a)  >?  P(y|f,b) 

• P(y|f,a) = 9/10 = 0.9 P(y|f,b) = 32/40 = 0.8

• P(y|a) = 34/50 = 0.68 P(y|b) = 37/50 = 0.74

(y / n) a b

male 25/15 5/5

female 9/1 32/8
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Simpson’s “Paradox”
real-world examples

• Two hospitals in a city
– Hospital A is better for minor injuries

– Hospital A is better for serious injuries

– Hospital B is better if unknown

• Berkeley engineering college
– Overall the college discriminates against females 

and for males in admission

– But each department discriminates against 
males and for females in admission
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Machine Learning

Programming (?)

Rote Learning

Supervised Learning from Examples

Semi-supervised Learning

Learning by Analogy

Learning from Observation (active 
learning)

Data Mining / Unsupervised Learning

Discovery

More Human
Involvement

Less Human
Involvement

Mostly This One
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General Learning Paradigm

Performance
Element

Learning
Element

Input
(world)

Output

Peformance Element task is usually either 

Classification or Problem Solving

Chest X-ray diag. Planning
Insurance risk eval. Network configuration
Handwritten recog. Adaptive user interface

… …
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Important Distinctions and Ideas

• On line (incremental / streaming) vs. Batch

• Supervised / Unsupervised / Semi-supervised
(compare w/ reinforcement learning)

• Generative vs. Discriminative

• Two Spaces for a Learner

– Example Space – all possible inputs

– Hypothesis (concept) Space
• All possible outputs (concepts)

• Each partitions the input space

• Training Set for Supervised Learning
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Machine Learning as an Empirically Guided 
Search through the Hypothesis Space

-
-

+

+

+

-

Examples Hypotheses

-
-

+
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Learning Decision Trees
for Classification

• Ross Quinlan

– ID3

– C4.5

– C5.0 (commercial product)

– AI / ML

• Breiman, Friedman, Olshen, & Stone 

– CART

– Statistics
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What is a decision tree?

Test 2

Test 6Test 5

Test 3

Test 4

Test 1

V11

V22
V21

V12

V13

Label 2

Label 1

Label 1
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Suppose I like circles that are red
(I might not be aware of the rule)

• Features:
– Owner

• John, Mary, Sam

– Size
• Large, Small

– Shape
• Triangle, Circle, 

Square

– Texture
• Rough, Smooth

– Color
• Blue, Red, Green, 

Yellow, Taupe

Shape

Triangle Circle Square

Blue Red Green Yellow Taupe

Color



 

   

x [Like(x)  (Circle(x)  Red(x)]
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Decision Tree Learning by Hill Climbing

• If node is homogeneous
(or good enough) then STOP

• Choose most useful test
on which to split

• Recur on Children

Hypothesis space is the set of all decision trees
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Much Information Required
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Little Information Required

Training Data
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What makes a (test / split / feature) useful?

• Improved homogeneity
– Entropy reduction

– Information gain

• To evaluate a split utility
– Measure entropy / information required before

– Measure entropy / information required after

– Subtract 

• Expected number of bits to communicate the 
label of an item chosen randomly from a set
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Measuring Information
H denotes Information Need or Entropy

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

S1 =   
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Measuring Information

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

• What is H(S2) ? S2 =
 

 
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Measuring Information

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

• What is H(S2) ? 

• What is H(S3) ?

S3 =
           

           

           

           
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Measuring Information

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

• What is H(S2) ? 

• What is H(S3) ?

• What is H(S4) ?

S4 =  
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Measuring Information

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

• What is H(S2) ? 

• What is H(S3) ?

• What is H(S4) ?

• What is H(S5) ?

S5 =
           

           

           

           
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Measuring Information

• H(S) = bits required to label some x  S

• What is the upper bound if label  {+,-}

• What is H(S1) ?

• What is H(S2) ? 

• What is H(S3) ?

• What is H(S4) ?

• What is H(S5) ?

• What is H(S6) ?

S6 =
           

           

           

           

Think of expected number of bits

H(S6) should be closer to 0 than to 1
Information theory / coding theory is relevant
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Measuring Information

• H(S) = bits required to label some x  S

• Label  {A,B,C,D,E,F}, Upper bound now?

• What is H(S7) ?

S7 =

A A A A A A A A
A A A A A A A A 
B B B B B B B B 
C C D D E E F F

F A B B A A B A D 
A A A D A B E A F 
A A B B A C A E B 
A A A B C

16

8
2 2 2 2

=

A 1
B 01
C 0000
D 0001
E 0010
F 0011

FOR SAY

Sometimes needs 4 bits / label  (worse than 3) 26



Measuring Information

What is the expected 
number of bits?

• 16/32 use 1 bit

• 8/32 use 2 bits

• 4 x 2/32 use 4 bits

0.5(1) + 0.25(2) + 0.0625(4) + 
0.0625(4) + 0.0625(4) + 0.0625(4)

= 0.5 + 0.5 + 0.25 + 0.25 + 0.25 + 0.25

= 2

S7 =
A A A A A A A A
A A A A A A A A 
B B B B B B B B 
C C D D E E F F

16

8
2 2 2 2

A 1
B 01
C 0000
D 0001
E 0010
F 0011

FOR SAY

))(Pr(log)Pr( 2 vv
Labelsv





H(S) =
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Information Gain
Subtract Information 

required after split from 
before + - - + + + - - + - + - + + - - + 

+ + - - + - + - - + - - + - + - -
+ - + - + + - - + + - - - + - + -
+ + - - + + + - - + - + - + + - -

+ - +

- - + + + - + - + + -
+ - + + + - - + - + -

- + - + 

- - + - + - +  -
- - + - - - - + 

- - + - - -

+ + + + + 
+ + +

Sb w/  H(Sb)

Sa2 w/  H(Sa2)Sa1 w/  H(Sa1) Sa3 w/  H(Sa3)

Information required:

Before H(Sb)

After Pr(Sa1) H(Sa1) + 
Pr(Sa2) H(Sa2) + 
Pr(Sa3)  H(Sa3)

Estimate probabilities using 
sample counts

Information Gain = 
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Choosing the Most Useful Test 

• Estimate information gain for each test

• Choose the highest

Information Gain = 
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