Course Logistics

- Any suggestions on streamlining homework / MPs?
- Next: BN MP (watch for it)

Inference

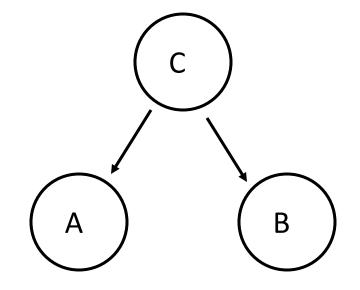
- Realizing what you already know (Inferencing does not make things true)
- Logical inference propagating truth
 - Given some axioms (believe these)
 - Derive theorems (must believe these)
- Statistical inference propagating evidence
 - Given some distributions, observations, etc.
 - Estimate other distributions, parameter values, probabilities, etc.
 - Uncertainty is fundamental

Conditional Independence

- Model the disease influencing the symptoms
- But no symptom interactions given the disease
- Conditional independence:

$$P(A|B,C) = P(A|C)$$

"A is conditionally independent of B given C"


Bayesian Networks (belief networks,...)

- Graphical model
 - Probability + Graph theory
- Nodes discrete random variables
- Directed Arcs direct influence
 - Usually "causality" (class, text,...)
- Configuration of parents establishes contexts for a node
 - Different distribution for each context
 - Conditional Probability Tables (CPTs)
- No directed cycles (DAG)
- General graphical models
 - Markov Networks
 - Conditional random fields
 - Dynamic Bayesian nets
 - others

Dentist Example

3 Boolean Random Variables:

- C Patient has a cavity
- A Patient reports a toothache
- B Dentist's probe catches on tooth

C directly influences A and B

A and B are conditionally independent given C

CPT at each node specifies a probability distribution for each context (configuration of parents)

How many numbers do we need for the full joint?

How many for the Bayesian net?

How Many Numbers

Joint:

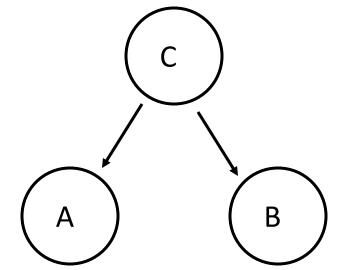
$$2^3 - 1 = 7$$
 (why?)

Bayes Net:

Distribution(s) at C

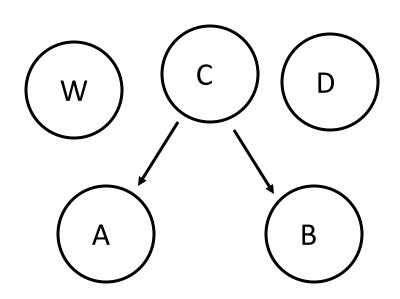
P(cavity), P(¬cavity)

Need one number


Distribution(s) at A

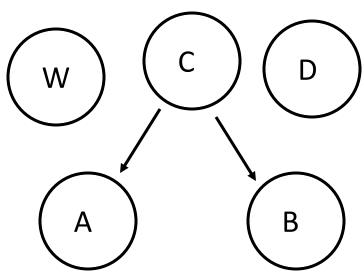
P(ache | cavity), P(¬ache | cavity)

P(ache | ¬cavity), P(¬ache | ¬cavity)


Distributions at B, like A

1 + 2 + 2 = 5 (a savings of 2!)

How Many Numbers?


- Add binary random variables for
 - Weather W
 - Weekday / Weekend D
- How many numbers for the joint? 31
- How many numbers for the BN?
- What does the BN look like?

How Many Numbers?

- Suppose A,B,C,D,W are trinary
- How many numbers for the joint? $3^5 - 1 = 242$
- How many numbers
 for the BN? 2+2+2+6+6 = 18
- Suppose A is binary,
 B is trinary, C takes on 4 values
 D takes on 5, W takes on 6?

W 5, D 4, C 3, A 4, B 8 = 24

Notation

- W, C, D, A, B are random variables
 - C (binary presence of cavity) ranges over values
 - C's values might be Yes or No; 1 or 0; c₁ or c₂
- Probability distribution: P(C)
- Probability value: P(C=c₁) or P(c₁) or P(c)
- P(A,B,C,W,D) full joint probability distribution
- P(a,b,c,w,d) some particular entry in the joint

A BN represents the full Joint

(it contains all of the information in the Joint)

The elements of the joint are recoverable from the BN

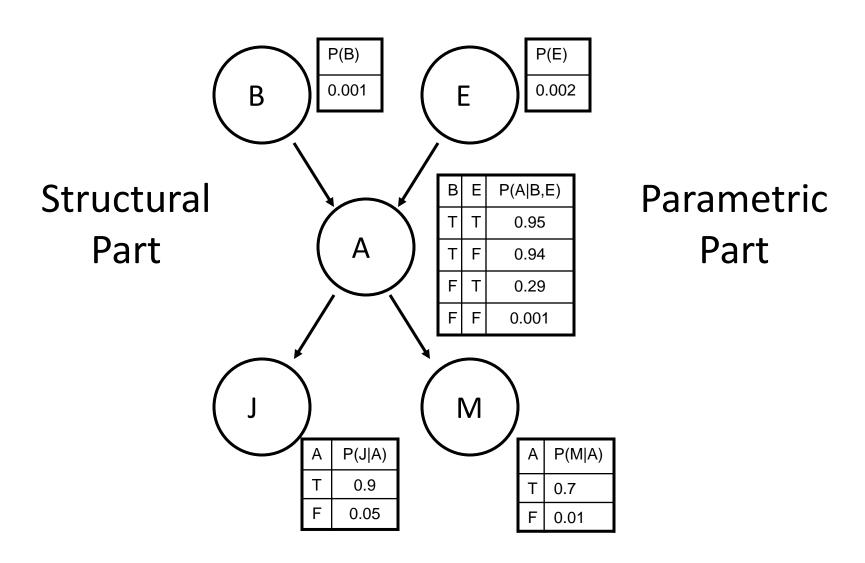
$$P(x_1, x_2, x_3, ...x_n) = \prod_{i=1}^{n} P(x_i \mid parents(X_i))$$
 (eqn 14.2)

- The Joint is "factorable"
- Use any topological ordering of the nodes
- Can we represent all Joints over $X_1, X_2, ... X_n$?
- Which cannot be represented in the BN?

How flexible is The Joint vs. A Bayesian Net

Q: What Joints cannot be represented?

A: Those that violate the BNs conditional independence assumptions


Q: How is a conditional independence assumption denoted in a BN?

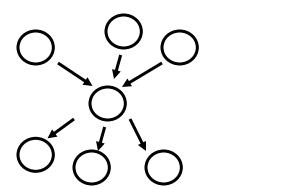
A: The *lack* of an arc.

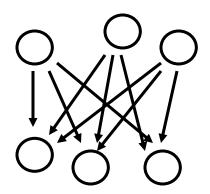
A Statistical Model (for us in AI)

- A (compact) representation of a particular statistical distribution
- Structural Part:
 - Commitment to random variables
 - Observable
 - Latent (Unobservable)
 - Captures restrictions on how they can interact
- Parametric Part:
 - Set of parameters (sufficient statistics)
 - Their values individuate a distribution

Bayes Net Model

Where do the CPT numbers come from


- Count
- Make them up (since we are Bayesians)


Where does the BN structure come from?

- Make it up (elicit it from experts)
- Learn from data
 - Works for special classes of nets
 - Can require too much data
 - Can be ill-posed

Missing Values in Observations

- Noise unsystematically erased
- Latent
 - Values never observed
 - Ex: "applicant honesty" in credit card form
 - Influences other variables

How many parameters (if Boolean)?

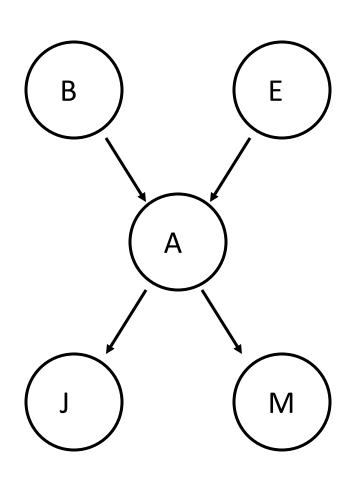
Inference in Bayes Nets

- What is the probability of some configuration (the query)
- Given:
 - A distribution
 - Some observations (the evidence)
- In our BN
 - What is the probability that John has a cavity and no toothache (the query)
 - Given that the dentist probe catches (the evidence)
- Query variables; Evidence variables

Inference with BNs

Five Boolean Random Variables:

B – a burglary is in progress


E – an earthquake is in progress

A – the alarm is sounding

J – John calls

M – Mary calls

What's missing?

Inference with BNs

Five Boolean Random Variables:

B – a burglary is in progress

E – an earthquake is in progress

A – the alarm is sounding


J – John calls

M – Mary calls

Are these numbers reasonable?

How would they be different if they were Joint entries?

We can compute Joint entries.

