Course Logisics

- We need more TAs
- Or less work for Dae Hoon
 Grading is the time-consuming portion...
- Machine Problem?

Religious wars among Statisticians (are you a Bayesian?)

- Frequentist / objectivist / classical statistics / Fisherian
 - World is some true distribution
 - Data are a random sampling
 - We can come to know the World approximately via data
 - Hypothesize; Observe; Evaluate
 - Changing the hypothesis taints the data (baseball, lottery)
 - Stock scam, wrong hypothesis

Bayesian

- Evidence can be objective (data) or subjective
- Evidence can testify for / against different distributions
- Will my plane crash? Chance of rain?
- Two meter problem
- Two envelope problem

Probability / Statistics

- Probability Space
 - Sample space (Atomic Events)
 - Event space
 - Probability measure

- Random Variables
- Distributions
- Statistical Inference

Joint Probability Distribution

- Discrete random variables
- Encodes all information of interest
- Allows arbitrary dependencies
- Exhaustive and Exclusive Atomic Events
- Must sum to 1
 (one less degrees of freedom than entries)
- Diseases / Symptoms illustration
 (useful but overly specific; really evidence and conclusions)

Weather

Ha	ve
Fur	า?

	Sunny	Cloudy	Rainy	Snowy
Yes	0.25	0.15	0.05	0.13
No	0.05	0.1	0.25	0.02

P(Rainy)

$$= 0.05 + 0.25$$

= 0.3

P(Rainy | ¬Sunny)

$$= P(Rainy \land \neg Sunny)$$
$$P(\neg Sunny)$$

$$= 0.3 / 0.7$$

P(Fun | Sunny)

$$= P(Fun \wedge Sunny)$$

$$P(Sunny)$$

$$= 0.25 / 0.3$$

Do I prefer Sun or Snow?

P(Fun | Snowy)

$$= 0.13 / 0.15 \approx 0.87$$

So I prefer snow

Bayes Theorem

•
$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

• Easy to rederive (you should never get it wrong!)

•
$$P(A \land B) = P(A \mid B) P(B)$$

= $P(B \mid A) P(A)$

Equate and solve for P(A | B)

How many numbers (parameters) to estimate from data?

- Number of diseases: n
- Number of symptoms: q
- Each symptom takes on v values

$nv^q - 1$

We need a number for each distinction in each dimension (less 1 since it is a distribution and sums to 1.0)

How many dimensions for this problem?

How many distinctions in each dimension?

- Number of diseases: n
- Number of symptoms: q
- Each symptom takes on v values

$$nv^q - 1$$

- How many dimensions for this problem?
 - One for each random variable
 - How many RV's?
 - One for the disease, one for each symptom
- How many distinctions in each dimension?
 - n for the disease
 - v for each of the q symptoms
- In total: n * v * v * v...(q times)... minus 1

How do we know the number or Random Variables?

- Identify the atomic events
- What is an atomic event for our problem?
- A person
- How many "random" attributes does a single person have?
- a disease and q symptoms

How do we know the number of parameters in the joint?

- One less than...
- The possible *combinations* of distinctions!
- Each RV makes some distinctions (takes on some number of different values)
- Combinations: $\prod_{rv \in RVs} distinctions(rv)$
- One factor for each RV; factor is # distinctions
- So: $n * v_1 * v_2 * v_3 * ... * v_{1q} 1$ Or: $nv^q 1$
- The joint allows for arbitrary (all possible) interactions

Independences are Redundancies in the Joint

- Random variables A and B are Independent iff P(A | B) = P(A)
- B provides no information about A

Suppose v

Weather distinctions: m

Fun levels: n

Times of the day: k

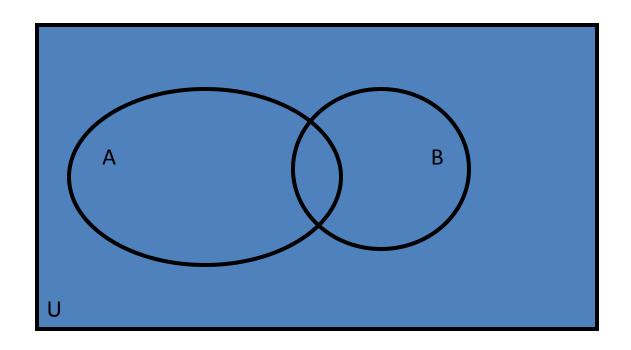
How many numbers

If random variables interact?

If they are independent?

$$(m-1) + (n-1) + (k-1)$$

Events A and B are independent



Independences are Redundancies in the Joint

- Random variables A and B are Independent iff P(A | B) = P(A)
- B provides no information about A

Suppose Weather distinctions: m

Fun levels: n

Times of the day: k

How many numbers

If random variables interact?

If they are independent?

(m·n·k) - 1

(m-1) + (n-1) + (k-1)

Implications for AI Representations

- Joint contains just as many numbers
- Some are functions of others
- Al knowledge representations should make all and only the distinctions necessary for effective performance
- Fewer numbers
 - more efficient processing
 - faster learning
 - fewer inconsistencies
 - smaller data structure...

Diseases and Symptoms

- Are they independent?
- We hope not!
- What could be independent?
- Where do the symptoms come from?

Conditional Independence

- Model the disease influencing the symptoms
- But no symptom interactions given the disease
- Conditional independence:

$$P(A|B,C) = P(A|C)$$

"A is conditionally independent of B given C"

More Conditional Independence

Suppose A is conditionally independent of B given C Is B necessarily conditionally independent of A given C?

$$P(A|B,C)=P(A|C) \Rightarrow ?$$

 $P(B|A,C)=P(B|C)$

$$P(A|B,C) = P(A|C)$$

$$\frac{P(A,B,C)}{P(B,C)} = \frac{P(A,C)}{P(C)}$$

$$\frac{P(A,B,C)}{P(A,C)} = \frac{P(B,C)}{P(C)}$$

$$P(B|A,C) = P(B|C)$$

YES, they are equivalent

More Conditional Independence

```
A is conditionally independent of B given C
C can still depend on both A and B
    P(C|A) \neq P(C) and P(C|B) \neq P(C)
A and B are not necessarily independent:
   P(B|A) \neq P(B) and P(A|B) \neq P(A)
But, Given C,
   A and B do not influence each other
Knowledge of C separates A and B
Suppose we do NOT know C,
   then A and B MAY influence each other
(think about this one until it's intuitive
  – what does "influence" mean here?)
```

Suppose that Symptoms are Conditionally Independent given the Disease

- We know John has a cold
- Congestion, a sore throat, headache, rash are more likely but not necessary

P(congestion | cold) >> P(congestion) likewise sore throat

- We discover he does in fact have a sore throat
- Is he now more or less likely to also have congestion?
- Not much:

P(congestion | sorethroat, cold) ~ P(congestion | cold)

We may choose not to model this and other weak interactions

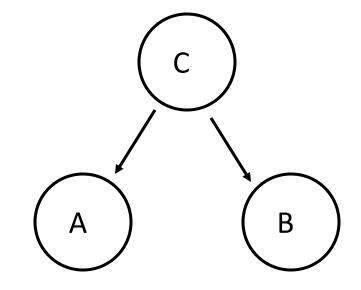
Bayesian Networks (belief networks,...)

- Graphical model
 - Probability + Graph theory
- Nodes discrete random variables
- Directed Arcs direct influence
 - Usually "causality" (class, text,...)
- Configuration of parents establishes contexts for a node
 - Different distribution for each context
 - Conditional Probability Tables (CPTs)
- No directed cycles (DAG)
- General graphical models
 - Markov Networks
 - Conditional random fields
 - Dynamic Bayesian nets
 - others

Dentist Example

3 Boolean Random Variables:

- C Patient has a cavity
- A Patient reports a toothache
- B Dentist's probe catches on tooth



C directly influences A and B

A and B are conditionally independent given C

CPT at each node specifies a probability distribution for each context (configuration of parents)

How many numbers do we need for the full joint?

How many for the Bayesian net?