Reasoning under Uncertainty

Extrapolate Shift from Classical Planning
to Reinforcement Learning

* Classical Planning
— Logic as reasoning engine
— Model is purely analytic
— Deep (first-order expressiveness)
— Brittle (uncertainty is unavoidable and catastrophic)

* Reinforcement Learning
— Decision Theory (statistics) as reasoning engine
— Model is largely empirical
— Shallow (propositional expressiveness)
— Robust (model is fit / adapted to the real world)

* Apply this paradigm shift to reasoning more
generally



Reasoning under Uncertainty

e Qualification Problem
* Laziness

* Theoretical Ignorance
* Practical Ignorance
 Computational Issues

It is sometimes better not to model the world
accurately (consider a coffee cup...)

Our models are always “approximate”

“All models are wrong, but some are usefu
- George Box, famous statistician

I”



Ontology / Semantics of Uncertainty

* Fuzzy logic —the world is imprecise
— “John is tall”
— Linguistic variables
— Characteristic functions / fuzzy sets
* Frequentist statistics — the distribution is real (world)
— Classical statistics; probability = long run average
— Data helps us approximate it
e Bayesian statistics — the data is real
— Subjective probabilities
— Evidence for different distributions



Religious wars among Statisticians
(are you a Bayesian?)

* Frequentist / objectivist / classical statistics / Fisherian
— World is some true distribution
— Data are a random sampling
— We can come to know the World approximately via data
— Hypothesize; Observe; Evaluate
— Changing the hypothesis taints the data (baseball, lottery)
— Stock scam, wrong hypothesis
* Bayesian
— Evidence can be objective (data) or subjective
— Evidence can testify for / against different distributions
— Will my plane crash? Chance of rain?
— Two meter problem
— Two envelope problem



Probability / Statistics

Probability Space

— Sample space (Atomic Events)
— Event space

— Probability measure

Random Variables
Distributions
Statistical Inference



Probabilities

Random variables — think features w/ prob. values
— Discrete (Boolean, multi-valued, countably infinite)
— Continuous
— (Technically neither a variable nor random...)

Events

— Atomic events
e “Sample space”
e Exclusive & Exhaustive
* Somewhat analogous to possible worlds of logic

— Complex events are sets of atomic events
Underlying population (all possible sequences of coin flips)
Sample (a few observed sequences of coin flips)
Joint probability distribution

Inference — conditioning, marginalizing, parameter estimation...



Prior or Unconditional Probability

* Long-run average
* For Bayesian also subjective likelihood

P(A) = #A outcomes

total # outcomes
in the underlying population

0<PA)<L1
P(True)=1; P(False)=0
P(Av B)=P(A) + P(B) — P(A A B)



Posterior or Conditional Probabilities

You don’t know Fred

What'’s the probability that Fred is taller than
6'?

In fact Fred’s mother is 6’3" (> 6')

Now what’s the probability that Fred is taller
than 6’7

P(A|B) — the universe becomes outcomes
where B holds



A: Person > 6’

B: Parent > 6’

P(A) =#A/ Total

=8/400r0.2 P(A|B) = P(A A B) / P(B)
P(A|B) = #(A A B) / #B orovided P(B) > 0
=2/40r05

P(A A B)=P(A|B) P(B)

Note the difference between probabilities and sample—
based estimates of probabilities



Joint Probability Distribution

Weather
Sunny | Cloudy | Rainy | Snowy

Yes | 0.25 | 0.15 | 0.05 | 0.13

Have
Fun? No 0.05 0.1 0.25 | 0.02

Probabilities for each Atomic Event

Marginal Probabilities: P(Sunny), P(Fun), etc.
(Written in the margins)

Conditional Probabilities: P(Fun|Sunny)

How many degrees of freedom in the joint?



Weather

Sunny | Cloudy | Rainy | Snowy
Yes 0.25 | 0.15 | 0.05 | 0.13

Have

Fun? No 0.05 0.1 0.25 | 0.02
P(Rainy) P(Rainy | —Sunny) P(Fun | Sunny)
=0.05+0.25 = P(Rainy A —=Sunny) = P(Fun A Sunny)
-03 P(—Sunny) P(Sunny)

| =0.3/0.7 =0.25/0.3

~0.43 ~0.83

Do | prefer Sun or Snow?
P(Fun | Snowy)

~0.87

=0.13/0.15 So | prefer snow



Joint Probability Distribution

Discrete random variables

Encodes all information of interest
Allows arbitrary dependencies
Exhaustive and Exclusive Atomic Events

Must sumto 1
(one less degrees of freedom than entries)

Diseases / Symptoms illustration
(useful but overly specific; really evidence and conclusions)



Bayes Rule
(NB: Frequentists also believe in Bayes Rule)
Symptoms: headache, stiff neck, fever, ...

Diseases: head cold, poor posture, meningitis,

P(d. | S): Find people with symptom
combinations, determine if diseased

But some (meningitis) are rare

P(S | d)) is often easier to estimate
go to hospital, ask sufferers of d. about S



Bayes Theorem

p(A| B)= PB F|)(AB))P(A)

Easy to rederive (you should never get it wrong!)

P(AAB) = P(A | B)P(B)
= P(B]A)P(A)

Equate and solve for P(A | B)



How to Diaghose

Estimate the Joint
Observe patient (= set of symptoms)

Compute P(d. | observed symptoms)
for each d.

Marginalize over the unobserved symptoms
Condition on the observed symptoms
Choose the most likely d.



How many numbers (parameters) to
estimate from data?

* Number of diseases: n
* Number of symptoms: g
* Each symptom takes on s values

nsd -1



Indepenences are Redundancies in the
Joint

« Random variables A and B are Independent iff P(A
| B) = P(A)

* B provides no information about A

SUppOSG Weather distinctions: m
Fun levels: n
Times of the day: k

How many numbers

If random variables interact? If they are independent?

(m:n-k)-1 (m-1) + (n-1) + (k-1)



