- Next: Foundations and KR for ML
 - Read Chapters 13 and 14
 - Uncertainty, Statistics, Probabilistic Reasoning
- VERY APPROXIMATE Grades are posted on Compass
 - G / UG curved separately (as announced)
 - HW2 is not included
 - Your position in distributions and honest assessment are more informative
 - Is your behavior predictive of the whole course?

Indirect / Direct RL

- Our TD RL is indirect RL
- Policy is constructed from world model
- Consider learning the policy directly
- Forgo learning the transition function T
- AKA Model based RL / Model free RL
- General distinctions in learning
 - Full or joint model / Conditional model
 - Generative model / Discriminative model

Q Learning: Direct RL

- Q function: Q: A x S $\rightarrow \Re$
- Q(a,s) the expected utility of performing action a in state s
- The greedy policy is simpler:

$$\pi^*(s) = \arg\max_{a} Q^*(a, s)$$

Recall model-based greedy policy:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot U^{\pi^*}(s')$$

(Recall the need for exploration)

Q Learning

Off Policy Learner

Definition of true Q

$$Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(a',s')$$
 ~Eqn 21.7

Q update rule

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot \left(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$
 Eqn 21.8

Or

$$Q(a,s) \leftarrow (1-\alpha) \cdot Q(a,s) + \alpha \cdot \left(R(s) + \gamma \max_{a'} Q(a',s') \right)$$

We can avoid R in Q also

Q update rule

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot \left(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$
 Eqn 21.8

Sampled r_s

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot \left(r_s + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

How Many Numbers for a Policy?

Policy: State \rightarrow Action

- Policy for TD Value Iteration?
 - T, U
 - T: $\Re^{|S|\cdot|A|\cdot|S|}$
 - $U: \Re^{|S|}$
 - $|S|^2 \cdot |A| + |S|$ real numbers
- Policy for Q?
 - -Q
 - Q: $\Re^{|S|\cdot|A|}$
 - − |S|·|A| real numbers

Learning in Parametric Policy Space

Policy / Value iteration as following gradients

Can we ever stop learning / exploring?

Can we ever stop trying action a_2 in state s_7 Two-arm bandit problem

- Arm1 pays with probability p1
- Arm2 pays with probability p2

What's the optimal policy?

Pull Arm1 if p1 > p2

Pull Arm2 otherwise

Can we learn the optimal policy for the two-arm bandit?

- Regret function
 - Accumulated deficit of not following the optimal policy
- Regret curves: Ideal, Random, Ideal learning

Theorem

- Regret grows as Sqrt (N)
- In fact
 - 0.264*Sqrt(N) < Regret < 0.376*Sqrt(N)
- This function grows without bound
- We can never stop trying the non-preferred arm
- We can never stop trying action a₂ in state s₇

What is On / Off Policy?

- Q learns how to perform optimally even when we are following a non-optimal policy
- In ε -greedy, ε leaves no trace in Q
- SARSA is on-policy
- Learns the best policy given our systematic departures from true optimal
- In ϵ -greedy, ϵ is reflected within SARSA's Q values

On Policy vs Off Policy

• Q, an off-policy learner:

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot \left(r_s + \gamma \max_{a'} Q(a',s') - Q(a,s)\right)$$

SARSA, an on-policy learner:

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot (r_s + \gamma \cdot Q(a',s') - Q(a,s))$$

- How do they differ?
 - Remember the persistent need for exploration
 - Consider cliff walking

Can we use more Information?

- Efficient = use all information
- No information until rewards
- Information is propagated one step back
- Can we do better?

Eligibility traces

Another parameter: λ

Between 0 and 1 (close to 1)

 $TD(\lambda)$, $Q(\lambda)$, $SARSA(\lambda)$

Reinforcement Learning vs. Classical Planning

More robust

- Fewer & weak a priori assumptions (esp. actions)
- Empirical model
- Fit (via parameter adjustment) to the observed world

Scaling difficulties

- Propositional expressiveness
- Space complexity
- States / Features (e.g., block positions)
- Time complexity
- Planning vs. Learning
- Recognizing convergence

Markov assumption

- Our world?
- Discretizing may not respect Markov

Typical Learning Curve

RL Links

- Eligibility Traces
 http://www.cs.ualberta.ca/~sutton/book/7/node1.html
- RoboCup at AAAI conferences
- Cobot.research.att.com many others