- Midterm Exam Thursday (here)
- Q/A session Wednesday 3PM 1310 DCL
- On Thursday spread out
- Don't behave suspiciously
- Sit
 - Every other seat
 - Every third row

World Model as Functions

- Transition function
 - T: S x A x S \rightarrow [0,1]
 - T(s,a,·) denotes a probability distribution over next states
 - $P(\cdot \mid s, a)$ with conditional probability notation
- Reward function
 - $\text{Rw: S x } \Re \rightarrow [0,1]$
 - Each Rw(s ,·) denotes a probability distribution over rewards
- What do we care about?
- R: $S \rightarrow \Re$
- R maps states to expected rewards

If we know T and R...

- We know enough to act optimally (although the algorithm is inefficient)
- We can estimate T and R from data

T(i,j,k) can be estimated as the ratio:

times action j takes us from state i to state k divided by # times action j is tried in state i

R(i) can be estimated as the sample average reward in state i

Why Inefficient?

- Rewards are local
- Prefer a global notion of state goodness including discounted future rewards
- This will be policy dependent (why?)
- Utility of a state s given a policy π with discount γ

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

Given that s_0 =s and we follow policy π , R&N eqn 21.1 (also 17.2)

If we knew U^{π^*} and T...

then the optimal policy is obvious.

In state s choose the action with the highest expected utility:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot U^{\pi^*}(s')$$

This is equation 17.4 in R&N (they use conditional probability notation)

Can we estimate U^{π} ?

Recall we can already estimate T (how?)

- Initialize U(s) arbitrarily
- Iteratively improve it:

$$U(s) \leftarrow U(s) + \alpha \cdot error$$
new old

- α is the learning rate 0< α <1
- What is the error?

Utility error

- Assuming policy π chooses action a in s
- Relate $U^{\pi}(s)$ and $U^{\pi}(s')$
- $U^{\pi}(s) = \gamma U^{\pi}(s') + R(s)$
- $U^{\pi}(s) \gamma U^{\pi}(s') = R(s)$
- If not equal then there is an error
- So error = $R(s) + \gamma U^{\pi}(s') U^{\pi}(s)$

Temporal Difference Learning

Since error =
$$R(s) + \gamma U(s') - U(s)$$

$$U(s) \leftarrow U(s) + \alpha \cdot error$$
new old

Becomes

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \Big(R(s) + \gamma \cdot U^{\pi}(s') - U^{\pi}(s) \Big)$$

This is the TD update equation 21.3 in R&N

A Different Perspective

TD Update

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \Big(R(s) + \gamma \cdot U^{\pi}(s') - U^{\pi}(s) \Big)$$

Can be written

$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \Big(R(s) + \gamma \cdot U^{\pi}(s')\Big)$$

• Or $(1-\alpha)$ (old estimate) + α (new estimate)

R(s) can be avoided

R(s) is $E(r_s)$ so

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \Big(R(s) + \gamma \cdot U^{\pi}(s') - U^{\pi}(s) \Big)$$

can be replaced with

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \left(r_s + \gamma \cdot U^{\pi}(s') - U^{\pi}(s)\right)$$

relying on repeated updates to average r_s and eliminating the explicit estimate of R(s)

This is Value Iteration

- Update the utility of the experienced state
- Take a step to improve $U^{\pi}(s)$
- Rely on repetition
 - Follow π
 - R(s) emerges
 - T(s,a,s') emerges
 - $-U^{\pi}(s)$ emerges
- Note we are neglecting information...

Exploration & Policy Improvement

- Can we change the policy?
- New / better $U^{\pi}(s)$ for some states
- Optimal policy

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot U^{\pi^*}(s')$$

- Danger of greedy behavior
- Need exploration

Exploration

- ε–greedy exploration
 - Decaying ε
 - Theoretical vs. practical concerns
 - GLIE greedy in the limit of infinite exploration
- Optimistic initialization (optimism under uncertainty)
- More principled ways of balancing exploration with exploitation

Policy Iteration

- Fix a policy $S \rightarrow A$, initially can be arbitrary
- Exercise the policy (Policy Evaluation)
- Gather statistics to estimate U(s) and T(s,a,s')
 - Better T & U estimates expose policy flaws
 - Note T estimates are OK
 - But U are specific to this policy
- Calculate a new policy (Policy Improvement)
 - Maximize the expected discounted utility
 - Use one-step lookahead with new U & T estimates
- Repeat
- Convergence: in probability, utility estimates improve
- We are still neglecting information...

Policy Iteration

estimate T and R

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

Given that s_0 =s and we follow police π , R&N eqn 21.1 (also 17.2)

$$U^{\pi}(s) = R(s) + E \left[\sum_{t=1}^{\infty} \gamma^{t} R(s_{t}) \right]$$

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') \cdot U^{\pi}(s')$$

Eqn 21.2 also 17.10, assuming we are at policy iteration i

Adaptive Dynamic Programming

Imagine successive value iteration...on s_0 ... on s_1 ... on s_2 :

Perform a₂, update U₂ with r₂ and U₃

U₂ is now updated to a better value

We used the old U_2 to update U_1 , shouldn't it be changed as well?

What about U_0 ?

Fully appreciate each r

Adaptive Dynamic Programming

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') \cdot U^{\pi}(s')$$

- We estimated R and T
- Consider $U^{\pi}(s)$ as unknowns
- We have n states (n=|S|)
- This is just a system of n linear equations
- Solve numerically or use modified policy iteration