- Homework 3 available
- Watch for solutions
- Midterm Exam 1 week from today

RL Model

- States are individuated by perception (i.e., intrinsic features) State = set of intrinsic features / Markov
- World is a finite exclusive and exhaustive set of states "Finite" is now required
- World changes are state transitions

Same

Actions may have probabilistic effects

 New action ontology
 Rewards (+ or -) occur probabilistically (for us, on state arrival)

New goal ontology Learn how to act so as to maximize rewards

New plan ontology (more a "policy")

Grid World

ACTIONS

← Left

 \rightarrow Right

↑ Up

↓ Down

	Start		
		-2	
+2		Goal +10	

Grid World Policy

ACTIONS

- ← Left
- \rightarrow Right
- ↑ Up
- ↓ Down

\rightarrow	Start	\rightarrow	\rightarrow	\
\	←	←	→ -2	\
+	\rightarrow	+	\	←
→ +2	↑	\rightarrow	Goal +10	←

Markov Decision Process

- Set of states $S = \{s_i\}$
- Set of actions A = {a_j}
- Initial distribution over S
 (more general than R&N)
- Transition model
- Probabilistic rewards (more general than R&N)
- State with no exit are "absorbing" (not necessary)

What is a "Distribution"?

- More later; for now...
- Distribution over initial states
 - Whenever needed, an initial s_0 is chosen
 - Each s ∈ S is chosen with some probability;
 together they sum to 1.0
- Statistical distributions also for:
 - Probabilistic rewards
 - Transition model

Rewards

(for us and R&N associated with a state)

- Rewards can be stochastic but are bounded
- Positive rewards are good
- Negative rewards are bad
- A policy that collects more rewards faster is better
- Is an immediate positive reward always desirable?
- Should an immediate negative reward always be avoided?

What is a Transition Model?

If actions were deterministic:

T:
$$S \times A \rightarrow S$$

But actions are stochastic:

T:
$$S \times A \times S \rightarrow [0,1]$$

A Policy chooses an action in a state

This determines a distribution over next states

The resultant state is chosen (by the world) according to the distribution

T(s,a,s')=0.2 means executing action a in state s results in state s' with a probability of 0.2

Markov Systems

- First order: current state provides all relevant information
- Second order: knowing the last two states provides all of the relevant information
- Nth order: state history of length N provides all of the relevant information
- We will assume first order Markov (Is this a strong assumption? What about Nth order?)

Partially Observable Markov Systems

- First order Markov: there is NO information beyond the current state
- Suppose there IS information but you cannot see it...what does that mean?
- Partially Observable Markov System
- Belief State = distribution over system states
- With more states, many more belief states
- Reinforcement Learning becomes more complex
 - MDP vs. POMDP
 - In general, intractable / undecidable / unlearnable
 - There are many special restrictions

Classical Planning Problems

Precise Logic-based World Model

- Frame Problem
- Qualification Problem
- Uncertainties
- Multiple agents
- Time & incomplete actions
- ...

Brittleness of a precise analytic model

Reinforcement Learning: Find a (nearly) optimal policy given

- Set of states S = {s}
- Set of actions A = {a}
- Initial distribution over 5
- Transition model
- Reward function

These properties of the world are denied to the reinforcement learner

Can we still acquire the optimal policy?

Reinforcement Learning

- Underlying Markov process
- Finite set of distinguishable states (each with a fixed but unknown reward distribution)
- Finite set of known actions
 (with fixed but unknown probabilistic effects)
- Learn an optimal policy by experiencing the world
- Contrast with Classical Planning
- Surprising? Markov assumption(!)

What is "Optimal"?

- Expected discounted reward
- What does "expected" mean?
- What is discounting?
- Why discount?
 - Pre-theoretic intuitions of rationality
 - Immortal beings
 - Relation to action penalties
 (optimism under uncertainty...)

Some Important Distinctions

- Active / Passive
- On Policy / Off Policy
- Direct (model free) / Indirect (model based)
- Foreshadowing: first exposure to Generative vs. Discriminative
- (not highlighted in text)

Passive vs. Active Learning

- Passive
 - Hold the policy constant (or watch someone else choose actions)
 - Learn about the world
- Active: change the policy to reflect new information (while learning)
 - Convergence complications?
 - On Policy vs. Off Policy
- Exploration: excitation of world dynamics
- Exploitation: gaining higher rewards
- Statistics Expected value & confidence Central Limit Theorem???

World / Model as Functions

- Transition function
 - T: S x A x S \rightarrow [0,1]
 - T(s,a,·) denotes a probability distribution over next states
- Reward function
 - $\text{Rw: S x } \Re \rightarrow [0,1]$
 - Each Rw(s ,·) denotes a probability distribution over rewards
- What do we care about?
- R: $S \rightarrow \Re$
- R maps states to expected rewards

If we know T and R...

- We know enough to act optimally (although the algorithm is inefficient)
- We can estimate T and R from data

T(i,j,k) can be estimated as the ratio:

times action j takes us from state i to state k divided by # times action j is tried in state i

R(i) can be estimated as the sample average reward in state i

Why Inefficient?

- Rewards are local
- Prefer a global notion of state goodness including discounted future rewards
- This will be policy dependent (why?)
- Utility of a state s given a policy π with discount γ

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

Given that s_0 =s and we follow policy π , R&N eqn 21.1 (also 17.3)

If we knew U^{π^*} and T...

then the optimal policy is obvious.

In state s choose the action with the highest expected utility:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot U^{\pi^*}(s')$$

This is equation 17.4 in R&N

Can we estimate U^{π} ?

Recall we can already estimate T (how?)

- Initialize U(s) arbitrarily
- Iteratively improve it:

$$U(s) \leftarrow U(s) + \alpha \cdot error$$
new old

- α is the learning rate 0< α <1
- What is the error?