CS/ECE 439: Wireless Networking

Physical Layer - Coding and Modulation

From Signals to Packets

Packet
Transmission

Packets				
	Header/Body	Header/Body		Header
Bit Stream		10		0

Digital Signal

Analog Signal

Binary Voltage Encoding

Common binary voltage encodings
, Non-return to zero (NRZ)

- NRZ inverted (NRZI)
- Manchester (used by IEEE 802.3-IO Mbps Ethernet)
- $4 \mathrm{~B} / 5 \mathrm{~B}$

Non-Return to Zero (NRZ)

- Signal to Data

$>$ High	\Rightarrow	1
$>$	Low	\Rightarrow
0		

- Comments
- Transitions maintain clock synchronization
- Long strings of Os confused with no signal
- Long strings of Is causes baseline wander
both inhibit clock recovery

Non-Return to Zero Inverted (NRZI)

- Signal to Data
- Transition \Rightarrow I
- Maintain

- Comments
- Solves series of Is, but not 0s

Manchester Encoding

- Signal to Data
, XOR NRZ data with clock
- High to low transition
- Low to high transition

\Rightarrow	1
\Rightarrow	0

- Comments
- (used by IEEE 802.3-10 Mbps Ethernet)
, Solves clock recovery problem
- Only 50% efficient ($1 / 2$ bit per transition)

4B/5B

- Signal to Data
- Encode every 4 consecutive bits as a 5 bit symbol
- Symbols
- At most I leading 0
- At most 2 trailing 0s
- Never more than 3 consecutive 0s
- Transmit with NRZI
- Comments
- 16 of 32 possible codes used for data
- At least two transitions for each code
- 80% efficient

4B/5B - Data Symbols

At most 1 leading 0
At most 2 trailing 0 s

- $0000 \Rightarrow$	11110	- $1000 \Rightarrow$	10010
- $0001 \Rightarrow$	01001	- $1001 \Rightarrow$	10011
- $0010 \Rightarrow$	10100	- $1010 \Rightarrow$	10110
- $0011 \Rightarrow$	10101	- $1011 \Rightarrow$	10111
- $0100 \Rightarrow$	01010	- $1100 \Rightarrow$	11010
- $0101 \Rightarrow$	01011	- $1101 \Rightarrow$	11011
, $0110 \Rightarrow$	01110	- $1110 \Rightarrow$	11100
, $0111 \Rightarrow$	01111	- $1111 \Rightarrow$	11101

4B/5B - Control Symbols

- IIIII $\Rightarrow \quad$ idle
- IIOOO $\Rightarrow \quad$ start of stream I
- 1000 I $\Rightarrow \quad$ start of stream 2
- $\mathrm{OIIOI} \Rightarrow \quad$ end of stream I
- $001 \mathrm{II} \Rightarrow \quad$ end of stream 2
- $\mathrm{OO} \mathrm{OO} \Rightarrow \quad$ transmit error
- Other \Rightarrow
invalid

Basic Modulation Techniques

- Encode digital data in an analog signal
- Amplitude-shift keying (ASK)
- Amplitude difference of carrier frequency
- Frequency-shift keying (FSK)
- Frequency difference near carrier frequency
- Phase-shift keying (PSK)
- Phase of carrier signal shifted

Amplitude-Shift Keying

- Binary digit (I)
- Represented by presence of carrier, at constant amplitude

Binary digit (0)

- Represented by absence of carrier

$$
s(t)=\left\{\begin{array}{cc}
A \cos \left(2 \pi f_{c} t\right) & \text { binary } 1 \\
0 & \text { binary } 0
\end{array}\right.
$$

* where the carrier signal is $A \cos \left(2 \pi f_{c} t\right)$
- Inefficiencies
- Sudden gain changes
- Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber

Binary Frequency-Shift Keying (BFSK)

- Binary digits (0 and I)
- Represented by two different frequencies near the carrier frequency

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{1} t\right) & \text { binary } 1 \\ A \cos \left(2 \pi f_{2} t\right) & \text { binary } 0\end{cases}
$$

* where f_{1} and f_{2} are offset from carrier frequency f_{c} by equal but opposite amounts
- Less susceptible to error than ASK
- Sometimes used for radio (3 to 30 MHz) or coax
- Demodulator looks for power around f_{1} and f_{2}

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$
s_{i}(t)=A \cos 2 \pi f_{i} t \quad 1 \leq i \leq M
$$

- $f_{i}=f_{c}+(2 i-I-M) f_{d}$
- $f_{c}=$ the carrier frequency
- $f_{d}=$ the difference frequency
- $M=$ number of different signal elements $=2 L$
, L = number of bits per signal element

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error
- Each symbol represents L bits
- Symbol length is $T_{\mathrm{s}}=L T$ seconds, where T is the bit period

Phase-Shift Keying (PSK)

- Two-level PSK (BPSK)

- Uses two phases to represent binary digits

$$
\begin{aligned}
s(t) & = \begin{cases}A \cos \left(2 \pi f_{c} t\right) & \text { binary } 1 \\
A \cos \left(2 \pi f_{c} t+\pi\right) & \text { binary } 0\end{cases} \\
& = \begin{cases}A \cos \left(2 \pi f_{c} t\right) & \text { binary } 1 \\
-A \cos \left(2 \pi f_{c} t\right) & \text { binary } 0\end{cases}
\end{aligned}
$$

Phase-Shift Keying (PSK)

- Differential PSK (DPSK)

- Phase shift with reference to previous bit
- Binary 0
\square Signal of same phase as previous signal burst
- Binary I
\square Signal of opposite phase to previous signal burst

Phase-Shift Keying (PSK)

- Four-level PSK (QPSK)
- Each element represents more than one bit
- Ex. Phase shift of multiples of $2 \pi\left(90^{\circ}\right)$

$$
S(t)= \begin{cases}A \cos \left(2 \pi f_{c} t+\frac{\pi}{4}\right) & 11 \\ A \cos \left(2 \pi f_{c} t+\frac{3 \pi}{4}\right) & 01 \\ A \cos \left(2 \pi f_{c} t-\frac{3 \pi}{4}\right) \\ A \cos \left(2 \pi f_{c} t-\frac{\pi}{4}\right)\end{cases}
$$

Phase-Shift Keying (PSK)

- Multilevel PSK

- Each angle has more than one amplitude
- Multiple signals elements

$$
D=\frac{R}{L}=\frac{R}{\log _{2} M}
$$

- $\mathrm{D}=$ modulation rate, baud
- $R=$ data rate, bps
- $M=$ number of different signal elements $=2^{L}$
- $L=$ number of bits per signal element

Quadrature Amplitude Modulation (QAM)
QAM uses two-dimensional signaling

- ASK and PSK
- A_{k} modulates in-phase
- B_{k} modulates quadrature phase $\sin \left(2 \pi f_{c} \mathrm{t}\right)$

$$
s(t)=A_{k}(t) \cos 2 \pi f_{c} t+B_{k}(t) \sin 2 \pi f_{c} t
$$

Signal Constellations

- Each pair $\left(A_{k}, B_{k}\right)$ defines a point in the plane
- Signal constellation set of signaling points

4 possible points per T sec.
2 bits / pulse

I6 possible points per T sec.
4 bits / pulse

Other Signal Constellations

- Point selected by amplitude \& phase

4 possible points per T sec.
16 possible points per T sec.

Adapting to Channel Conditions

- Channel conditions vary
- Physical environment of the channel
- Changes over time (slow and fast fading)
- Fixed coding/modulation scheme will often be inefficient
- Too conservative for good channels
- Too aggressive for bad channels
- Adjust coding/modulation based on channel conditions -"rate" adaptation
- Controlled by the MAC protocol
- E.g. 802.IIa: BPSK - QPSK - 16-QAM - 64 QAM

Bad Good

Some Examples

- Gaussian Frequency Shift Keying
, I/-I is a positive/negative frequency shift from base
- Gaussian filter is used to smooth pulses- reduces the spectral bandwidth -"pulse shaping"
- Used in Bluetooth
- Differential quadrature phase shift keying
" Variant of "regular" frequency shift keying
- Symbols are encoded as changes in phase
- Requires decoding on $\pi / 4$ phase shift
, Used in 802.1Ib networks
- Quadrature Amplitude modulation
- Combines amplitude and phase modulation
- Uses two amplitudes and 4 phases to represent the value of a 3 bit sequence

