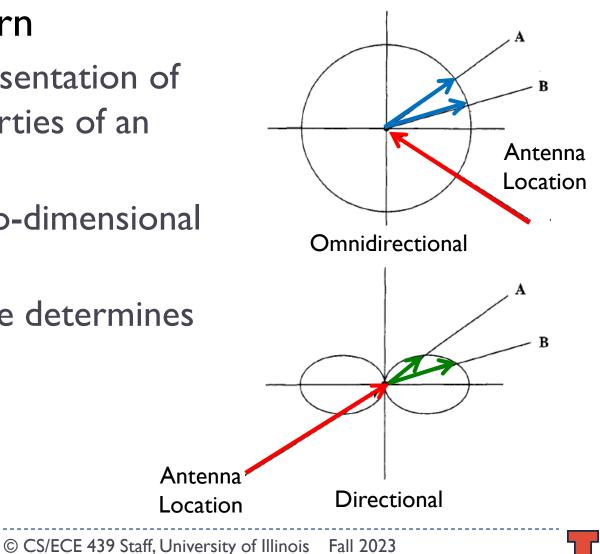
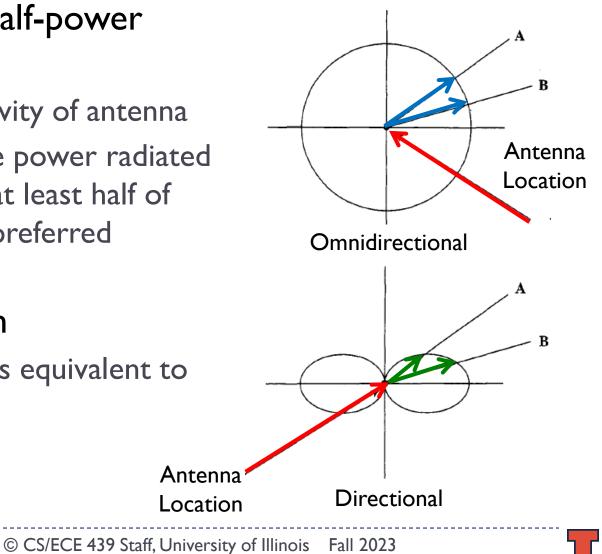
CS/ECE 439: Wireless Networking

Physical Layer – Antennas and Propagation

What is an Antenna?

Conductor that carries an electrical signal


- Transmission
 - Radiates RF signal (electromagnetic energy) into space
- Reception
 - Collects electromagnetic energy from space
- The RF signal "is a copy of" the electrical signal in the conductor
- Two-way communication
 - Same antenna used for transmission and reception
- Efficiency of the antenna depends on its size, relative to the wavelength of the signal
 - e.g. quarter a wavelength


Radiation Patterns

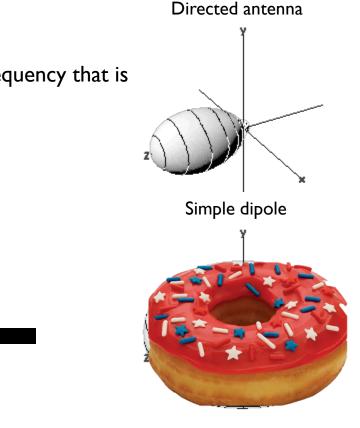
- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section
 - Relative distance determines relative power

Radiation Patterns

- Beam width (or half-power beam width)
 - Measure of directivity of antenna
 - Angle at which the power radiated by the antenna is at least half of the power at the preferred direction
- Reception pattern
 - Receiving antenna's equivalent to radiation pattern

Antenna Types: Dipoles

Simplest

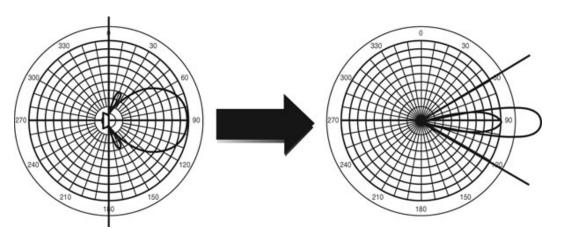

quarter wave

vertical antenna

- Quarter wave vertical (Marconi)
 - Automobile and portable radios
- Half-wave dipole (Hertz)
 - Very simple and very common
 - Elements are quarter wavelength of frequency that is transmitted most efficiently

half-wave dipole

- Donut shape
- Many other designs



Antenna Gain

Antenna gain

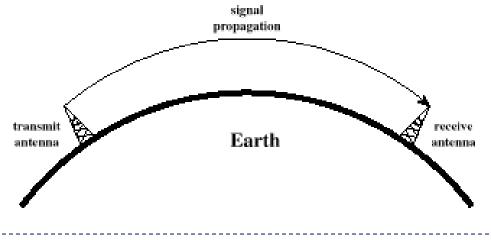
Measure of directionality

- Definition: Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna
- ex.Antenna with a gain of 3dB
 - □ Improves on an omnidirectional antenna in that direction by 3dB (or a factor of 2)
- Reduced power in other directions!

Antenna Gain

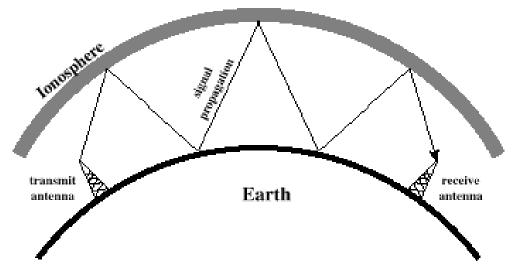
Antenna gain

Measure of directionality


- Definition: Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna
- ex.Antenna with a gain of 3dB
 - □ Improves on an omnidirectional antenna in that direction by 3dB (or a factor of 2)
- Reduced power in other directions!

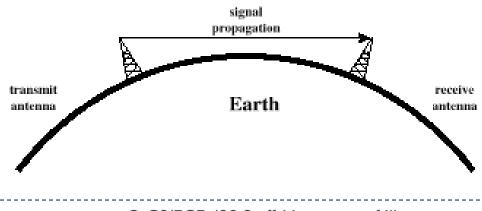
Effective area

Related to physical size and shape of antenna


Propagation Modes

- Ground-wave propagation
 - More or less follows the contour of the earth
 - Past the visual horizon!
 - Electromagnetic wave induces a current in the earth's surface
 - Slows the wavefront near the earth and causes the wavefront to tilt down
 - For frequencies up to about 2 MHz. e.g. AM radio

Sky wave propagation


- Signal "bounces" off the ionosphere back to earth
 - Can go multiple hops and 1000s of km
- Used for amateur radio and international broadcasts

Propagation Modes

Line-of-sight (LOS) propagation

- Most common form of propagation
- ► Happens above ~ 30 MHz
- Subject to many forms of degradation!

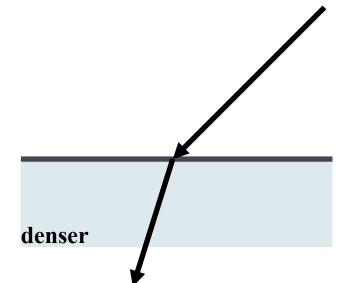
Propagation Degrades RF Signals

Attenuation in free space

- Signal gets weaker as it travels over longer distances
 - Radio signal spreads out free space loss
 - Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection
 - Part of the signal is redirected

Propagation Degrades RF Signals

Multi-path effects


- Multiple copies of the signal interfere with each other
- Similar to an unplanned directional antenna

Mobility

- Moving receiver causes another form of self interference
- Node moves 1/2 wavelength -> big change in signal strength

Refraction

- Speed of EM signals depends on the density of the material
 - ► Vacuum: 3 x 10⁸ m/sec
 - Denser: slower
- Density is captured by refractive index
- Explains "bending" of signals in some environments
 - e.g. sky wave propagation
 - But also local, small scale differences in the air density, temperature, etc.

LOS Wireless Transmission

- Attenuation and attenuation distortion
- Free space loss
- Noise
- Atmospheric absorption
- Multipath
- Refraction
- Thermal noise

Attenuation

- Strength of signal falls off with distance over transmission medium
- Attenuation factors
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error
 - \Rightarrow Power control, amplifiers
 - Signal must not be too strong, overwhelming the circuitry of the receiver!

Attenuation

Strength of signal falls off with distance over transmission medium

- Attenuation factors
 - Attenuation is greater at higher frequencies, causing distortion
 - Attenuation distortion
 - \Rightarrow Equalize attenuation
 - Amplify high frequencies more

Free Space Loss

Loss increases quickly with distance (d²) Ideal:

Loss =
$$P_t / P_r$$

= $(4\pi d)^2 / (G_r G_t \lambda^2)$
= $(4\pi f d)^2 / (G_r G_t c^2)$

Loss depends on frequency

- Higher loss with higher frequency
- Adjust gain of the antennas at transmitter and receiver

Log Distance Path Loss Model

Log-distance path loss model

 Captures free space attenuation plus additional absorption by of energy by obstacles:

$$Loss_{db} = L_0 + 10 n \log_{10}(d/d_0)$$

- L₀ is the loss at distance d0
- n is the path loss distance component

Value of n depends on the environment

- ► 2 free space model
- ► 2.2 office with soft partitions
- ► 3 office with hard partitions
- Higher if more and thicker obstacles

Noise Sources

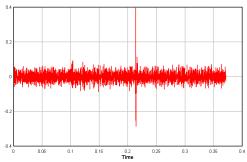
- Noise = unwanted signals!
- Thermal noise
 - Agitation of the electrons
 - Function of temperature

- Uniform across all frequencies (white noise)
- Affects electronic devices and transmission media
- We're stuck with it!
 - □ Determines an upper bound on performance

Noise Sources

Intermodulation noise

- Mixing signals on same media
 - > Appears as sum $(f_1 + f_2)$ or difference $(f_1 f_2)$ of original frequencies


Cross talk

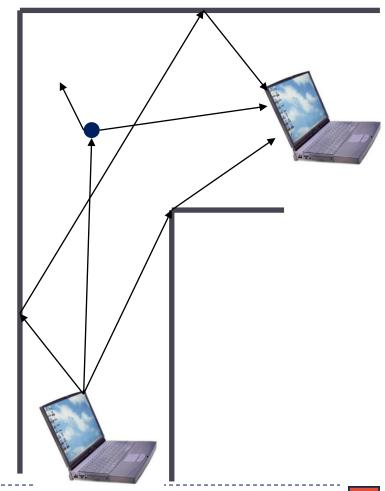
- Picking up other near-by signals
 - e.g. from other source-destination pairs
 - Significant in the ISM bands!

Impulse noise

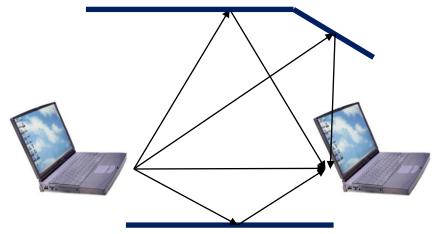
- Irregular pulses of high amplitude and short duration
 - Harder to deal with
 - Interference from various RF transmitters
 - Should be dealt with at protocol level
 - Worse for digital data!

Fall 2023

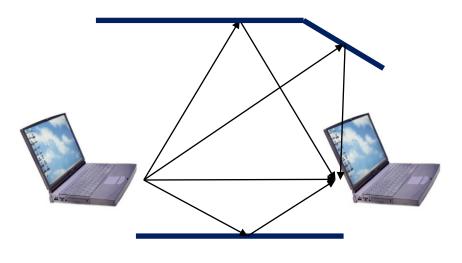
Other LOS Factors


Absorption of energy in the atmosphere

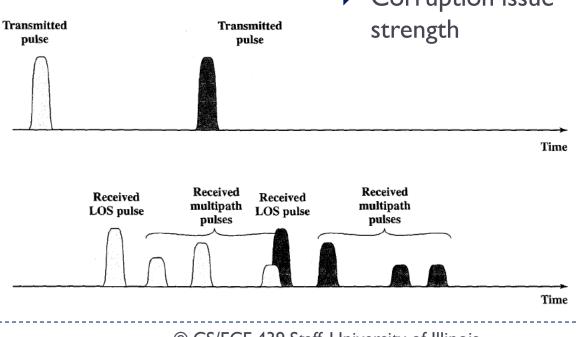
- Very serious at specific frequencies
 - e.g. water vapor (22 GHz) and oxygen (60 GHz)
 - If there is rain, user shorter paths or lower frequencies!
- Obviously objects also absorb energy


Non LOS transmissions

- Signal can reach receiver indirectly
 - Reflection
 - Signal is reflected from a large (relative to wavelength) object
 - Diffraction
 - Signal is scattered by the edge of a large object – "bends"
 - Scattering
 - Signal is scattered by an object that is small relative to the wavelength


Multipath Effect

- Receiver receives multiple copies of the signal
 - Each copy follows a different path
 - Length of path determines phase-shift
- Copies can either strengthen or weaken each other
 - Depends on whether they are in our out of phase


Multipath Effect

- Changes of half a wavelength affect the outcome
 - Challenging for short wavelengths
 - ▶ 2.4 Ghz \rightarrow 12 cm
 - ▶ 900 MHz $\rightarrow \sim I ft$
- Small adjustments in location or orientation of the wireless devices can result in big changes in signal strength

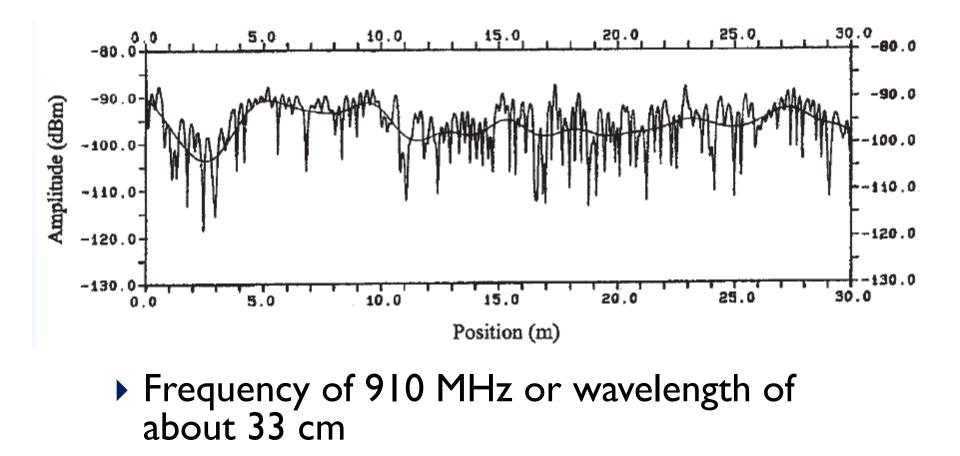
Inter-Symbol Interference

- Larger difference in path length can cause intersymbol interference (ISI)
 - Different from effect of carrier phase differences
- Delays on the order of a symbol time result in overlap of the symbols
 - Makes it very hard for the receiver to decode
 - Corruption issue not signal strength

Can you still hear me ..

Fading

- Time variation of the received signal strength
- Changes in the transmission medium or paths
 - ▶ Rain, moving objects, moving sender/receiver, ...


Fast Fading

- Changes in distance of about half a wavelength
 - Big fluctuations in the instantaneous power

Slow Fading

- Changes in larger distances
 - Change in the average power levels

Fading - Example

Fall 2023

Fading Channel Models

- Statistical distribution that captures the properties fading channels due to mobility
 - Fast versus slow
 - Flat versus selective
- Models depend on the physical environment
 - Obstacles in the environment
 - Movement in the environment
 - Mobility of devices
- Useful for evaluation of wireless technologies
 - How well does radio deal with channel impairments
 - Network simulators tend to use simpler channel models

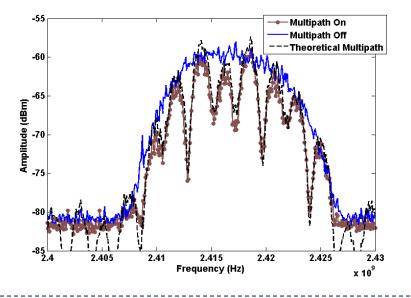
Fading Channel Models

Additive white Gaussian nose

Not representative of wireless channels

Ricean distribution

- LOS path plus indirect paths
 - Open space or small cells
 - K = power in dominant path/power in scattered paths
 - Speed of movement and min-speed


Rayleigh distribution

- Multiple indirect paths but no dominating or direct LOS path
 - Lots of scattering, e.g. urban environment, in buildings
 - Sum of uncorrelated Gaussian variables
 - K = 0 is Raleigh fading
- Many others!

Selective versus Non-selective Fading

Non-selective (flat) fading

- Affects all frequency components in the signal equally
 - e.g. when only line of sight

Selective fading

- Frequency components experience different degrees of fading
 - Due to multipath
 - Region of interest is the spectrum used by the channel

Movement by the transmitter, receiver, or objects in the environment can also create a doppler shift:

$$f_m = (v / c) * f$$

- Results in distortion of signal
 - Shift may be larger on some paths than on others
 - Shift is also frequency dependent (minor)
- Effect only an issue at higher speeds:
 - Speed of light: 3 * 10⁸ m/s
 - Speed of car: I0⁵ m/h = 27.8 m/s
 - Shift at 2.4 GHz is 222 Hz

Power Budget

 $R_{power} (dBm) = T_{power} (dBm) + Gains (dB) - Losses (dB)$

- Receiver needs a certain SINR to be able to decode the signal
 - Required SINR depends on coding and modulation schemes, i.e. the transmit rate
- Factors reducing power budget:
 - Noise, attenuation (multiple sources), fading, ..
- Factors improving power budget:
 - Antenna gain, transmit power

Channel Reciprocity Theorem

- If the role of the transmitter and the receiver are interchanged, the instantaneous signal transfer function between the two remains unchanged
 - Informally, the properties of the channel between two antennas is in the same in both directions
 - i.e. the channel is symmetric
- Channel in this case includes all the signal propagation effects and the antennas

Reciprocity Does not Apply to Wireless "Links"

- "Link" corresponds to the packet level connection between the devices
 - In other words, the throughput you get in the two directions can be different
- The reason is that many factors that affect throughput may be different on the two devices
 - Transmit power and receiver threshold
 - Quality of the transmitter and receiver (radio)
 - Observed noise
 - Interference
 - Different antennas may be used