Internet of Things!

Fall 2023

© CS 439, University of Illinois Fall 2023

IoT: The Vision

Connecting users to the information around them ...

IoT: The Vision

Connecting users to the information around them ...

to enable better recommendati ons, services and overall user

© CS 439, University of Illinois **experiences** 2023.

IoT: The Vision

Connecting users to the information around them ...

to enable better recommendati ons, services and overall user

© CS 439, University of Illinois **experiences** 2023.

Ŕ

As we move through the world and interact with our environments ...

we leave behind breadcrumbs

IoT: The Problem

BuzzFeednews

Exclusive: Hundreds Of Devices Hidden Inside New York City Phone Booths

Beacons can push you ads — and help track your every move. Update: Hours after BuzzFeed News exposed the devices, the city ordered the removal of the devices.

Anyone can now track the user!

TECH

IoT: The Problem

BuzzFeednews

Exclusive: Hundreds Of Devices Hidden Inside New York City Phone Booths

Beacons can push you ads — and help track your every move. Update: Hours after BuzzFeed News exposed the devices, the city ordered the removal of the devices.

No one should ever use IoT if we can't provide privacy

TECH

How to do this right ...

Where are we today?

Fall 2023

CONNECTED IN MERCEN NOT MARKET WIGHT WI

IoT Networks

IoT Network

Goal

Connecting users
 to the information
 around them

Targeted Solutions

IoT in Home Automation

IoT in Retail

Connecting Devices

Connecting Devices

From Small Things ...

From Small Things ...

From Small Things ...

So we have lots of devices ...

So we have lots of devices ...

So we have lots of devices ...

More than a Mobile Network

More than an Ad Hoc Network

More than a Sensor Network

Goals

- Collecting data and connecting sensors to the cloud
- End-to-end communication

More than a DTN Network

- Collecting and moving data through a disconnected network
- End-to-end communication

Can we hide it all under IP?

Can we hide it all under IP?

Can we hide it all under IP?

IoT Network

Goal

- Connecting users to the information around them
- Local point-topoint communication
- Cloud based endto-end

communication

IoT Network

Proximity networking

- Discovery
- Localization

and

Cloud-based networking

• Service and data management

IoT Network

Solutions must be:

Localized Low bandwidth Energy efficient Privacy preserving

➔ Need to design from the bottom up

Wireless Networking

Wireless Networking

© CS 439, University of Illinois

Wireless Networking

Device proximity is unplanned and unpredictable

Limited Resources

- Imbalance of power
 - Gateways have wall power
 - User devices are energyconstrained
 - Everything in-between
- Shared wireless bandwidth

Continuous beaconing/searching is not feasible

- User devices need to duty cycle wireless
- Global Synchronization is
 difficult

Solutions are technologyspecific

AP Discovery

Base station:

- No energy constraints
- Always on

Mobile

 Balance discovery delay with energy consumption

AP Discovery

Bandwidth constrains:

 Balance discovery delay with bandwidth overhead

Asymmetric
DiscoveryDiscoveryMaster-Slave:
• Complex•

- Slow
- Requires user input

OK for long-lived, low BW connections

© CS 439, University of Illinois

Simplified Discovery

Beacon:

- Passive
- Active
- Client duty cycles listening

Small payload (31B)

Simplified Discovery

Beacon:

- Passive
- Active
- Client duty cycles listening

Small payload (31B)

Ultra-low power discovery

Wireless Networking

All transmission contain the identity of the sender (MAC address)

Radio waves Transmitter Antenna Receiver Antennas

Anyone can listen © CS 439, University of Illinois and track the user

ľ

© CS 439, University of Illinois

Where do we go from here?

Internet of Things

