CS 439: Wireless Networking

Multihop and Infrastructureless Wireless Networks

© CS/ECE 439 Staff, University of Illinois Fall 2023

Wireless Multihop Networks

- Vehicular Networks
 - Delay Tolerant (batch) sending over several hops carry data to a base station
- Common in Sensor Network for periodically transmitting data
 - Infrastructure Monitoring
 - E.g., structural health monitoring of the Golden Gate Bridge
- Multihop networking for Internet connection sharing
 - Routing traffic over several hops to base station connected to Internet

In an ideal world ...

In an ideal world ...

© CS/ECE 439 Staff, University of Illinois Spring 2019

© CS/ECE 439 Staff, University of Illinois Spring 2019

© CS/ECE 439 Staff, University of Illinois Spring 2019

When the network just isn't there ...

Ad hoc networks

- Group of cooperating nodes
- Nodes are mobile
- Paths eventual exist between a src/dst pair
- All nodes are routers

Sensor networks

- Similar to ad hoc networks
- Nodes are typically non-mobile
- Target long operating lifetimes

Opportunistic networks

- Nodes are mobile
- Paths may never exist between a src/dst pair
- Store-carry-forward

Ad Hoc Networks

- Formed by wireless hosts that may be mobile
- Without (necessarily) using a pre-existing infrastructure
- Routes between nodes may potentially contain multiple hops
 - Mobility causes route changes

Why Ad Hoc Networks ?

- Ease of deployment
- Speed of deployment
- Decreased dependence on infrastructure

Many Variations

Fully Symmetric Environment

All nodes have identical capabilities and responsibilities

Asymmetric Capabilities

- Transmission ranges and radios may differ
- Battery life at different nodes may differ
- Processing capacity may be different at different nodes
- Speed of movement

Asymmetric Responsibilities

- Only some nodes may route packets
- Some nodes may act as leaders of nearby nodes (e.g., cluster head)

Many Variations

- Traffic characteristics may differ in different ad hoc networks
 - Bit rate
 - Timeliness constraints
 - Reliability requirements
 - Unicast / multicast / geocast
 - Host-based addressing / content-based addressing / capability-based addressing
- May co-exist (and co-operate) with an infrastructure-based network

Many Variations

- Mobility characteristics
 - Speed
 - Predictability
 - Direction of movement
 - Pattern of movement
 - Uniformity (or lack thereof) of mobility characteristics among different nodes

Challenges

- Limited wireless transmission range
- Broadcast nature of the wireless medium
 Hidden terminal problem
- Packet losses due to transmission errors
- Mobility-induced route changes
- Mobility-induced packet losses
- Battery constraints
- Potentially frequent network partitions
- Ease of snooping on wireless transmissions

The Holy Grail

A one-size-fits-all solution

Perhaps using an adaptive/hybrid approach that can adapt to situation at hand

Difficult problem

 Many solutions proposed trying to address a sub-space of the problem domain

Unicast Routing in Ad Hoc Networks

© CS/ECE 439 Staff, University of Illinois

Fall 2023

Why is routing in wireless ad hoc networks different/difficult?

- Link instability causes many routing issues
 - Shortest hop routing often worst choice
 - Scarce bandwidth makes overhead conspicuous
 - Battery power a concern
 - Security and misbehavior ...

Host mobility

- Link failure/repair due to mobility may have different characteristics than those due to other causes
- Rate of link failure/repair may be high when nodes move fast
- New performance criteria may be used
 - Route stability despite mobility
 - Energy consumption

Routing in Mobile Networks

Where's **RED**

Imagine hundreds of hosts moving

Routing algorithm needs to cope up with varying wireless channel and node mobility

Unicast Routing Protocols

- Many protocols have been proposed
 - Some have been invented specifically for ad hoc networks
 - Others are adapted from wired network routing
- No single protocol works well in all environments
 - Some attempts made to develop adaptive protocols

Routing Protocols

- Proactive protocols
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols are proactive
- Reactive protocols
 - Maintain routes only if needed
- Hybrid protocols
 - Maintain routes to nearby nodes
 - Discover routes for far away nodes

Trade-Off

- Latency of route discovery
 - Proactive protocols
 - May have lower latency since routes are maintained at all times
 - Reactive protocols
 - May have higher latency because a route from X to Y will be found only when X attempts to send to Y

Trade-Off

Overhead of route discovery/maintenance

- Reactive protocols
 - May have lower overhead since routes are determined only if needed
- Proactive protocols
 - Can (but not necessarily) result in higher overhead due to continuous route updating
- Which approach achieves a better trade-off depends on the traffic and mobility patterns

Sender

Broadcasts data packet P to all its neighbors

Intermediate nodes

Forward P to its neighbors

Sequence numbers

 Used to avoid the possibility of forwarding the same packet more than once

Destination

- Packet P reaches destination D provided that D is reachable from sender S
- Node D does not forward the packet

nodes that have received packet

Node H receives packet from two neighbors: potential for collision

Node C receives packet from G and H, but does not forward it again, because node C has already forwarded that packet once

- Nodes J and K both broadcast packet to node D
 - Since nodes J and K are hidden from each other, their transmissions may collide

 Nodes J and K both broadcast packet to node D
 => Packet may not be delivered to node D at all, despite the use of flooding

Node D does not forward packet, because node D is the intended destination

- Flooding completed
 - Nodes unreachable from S do not receive packet (e.g., Z)
 - Nodes for which all paths from S go through D also do not receive packet (example: N)

- Flooding may deliver packets to too many nodes
 - worst case, all nodes reachable from sender may receive the packet

Flooding for Data Delivery: Advantages

- Simplicity
- Efficiency
 - Low rate of information transmission
 - Overhead of explicit route discovery/maintenance incurred by other protocols is relatively higher
 - For example, when nodes transmit small data packets relatively infrequently, and many topology changes occur between consecutive packet transmissions
- Potentially higher reliability of data delivery
 - Because packets may be delivered to the destination on multiple paths

Flooding for Data Delivery: Disadvantages

Potentially, very high overhead

- Data packets may be delivered to too many nodes who do not need to receive them
- Potentially lower reliability of data delivery
 - Flooding uses broadcasting
 - Hard to implement reliable broadcast
 - □ Broadcast in IEEE 802.11 MAC is unreliable
 - e.g., nodes J and K may transmit to node D simultaneously, resulting in loss of the packet
 - In this case, destination would not receive the packet at all

Flooding of Control Packets

- Many protocols perform (potentially limited) flooding of control packets, instead of data packets
 - > The control packets are used to discover routes
 - Discovered routes are subsequently used to send data packet(s)
- Overhead of control packet flooding is amortized over data packets transmitted between consecutive control packet floods
Dynamic Source Routing (DSR)

Route Discovery

- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
- Source node S floods Route Request (RREQ)
- Each node appends own identifier when forwarding RREQ

[X,Y]: list of identifiers appended to RREQ

Node H receives packet RREQ from two neighbors: potential for collision

Node C receives RREQ from G and H

Node C does not forward it again, because node C has already forwarded RREQ once

- Nodes J and K both broadcast RREQ to node D
 - Since nodes J and K are hidden from each other, their transmissions may collide

Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

Destination D

- On receiving the first RREQ, send a Route Reply (RREP)
- RREP is sent on a route obtained by reversing the route appended to received RREQ
- RREP includes the route from S to D on which RREQ was received by node D

Route Reply in DSR

- Route Reply
 - Bi-directional links
 - Reverse route in Route Request (RREQ)
 - RREQ should be forwarded only if received on a link that is known to be bidirectional
 - Unidirectional (asymmetric) links
 - RREP may need a route discovery for S from node D
 - $\hfill\square$ Route Reply is piggybacked on the Route Request from D
 - Unless node D already knows a route to node S

IEEE 802.11 MAC

Links must be bi-directional (since ACK is used)

Dynamic Source Routing (DSR)

On receiving RREP

Cache the route included in the RREP

Sending

- The entire route is included in the packet header
- Hence the name source routing

Intermediate nodes

Use the source route included in a packet to determine to whom a packet should be forwarded

Data Delivery in DSR

Packet header size grows with route length

When to Perform a Route Discovery

When node S wants to send data to node D, but does not know a valid route node D

DSR Optimization: Route Caching

- Caching
 - Each node caches a new route it learns by any means
 - Snooping
 - A node may also learn a route when it overhears Data packets

Use of Route Caching

- Broken routes
 - Use another route from the local cache
 - Otherwise, initiate new route discovery
- Intermediate response
 - On receiving a Route Request for some node D
 - □ Node X can send a Route Reply if node X knows a route to node D
- Use of route cache
 - Speed up route discovery
 - Reduce propagation of route requests

Use of Route Caching

Broken routes

- Use another route from the local cache
- Otherwise, initiate new route discovery

Intermediate response

- On receiving a Route Request for some node D
 - Node X can send a Route Reply if node X knows a route to node D

Use of route cache

- Speed up route discovery
- Reduce propagation of route requests

Use of Route Caching

[P,Q,R] Represents cached route at a node
DSR maintains the cached routes in a tree format

Use of Route Caching: Speed up Route Discovery

- > Z sends a route request for node C
 - Node K sends back a route reply [Z,K,G,C] to node Z using a locally cached route

Use of Route Caching: Reduce of Route Requests

No link between D and Z

- Route Reply (RREP) from node K limits flooding of RREQ
- In general, the reduction may be less dramatic.

Route Error (RERR)

When attempt to forward the data packet S (with route SEFJD) on J-D fails

- J sends a route error to S along J-F-E-S
- Nodes hearing RERR update their route cache to remove link J-D

Route Caching: Beware!

Stale caches

Can adversely affect performance

Timeliness

 With passage of time and host mobility, cached routes may become invalid

Know when to give up

 A sender host may try several stale routes (obtained from local cache, or replied from cache by other nodes), before finding a good route

Dynamic Source Routing: Advantages

On-demand

- Routes maintained only between nodes that need to communicate
- Reduces overhead of route maintenance

Route caching

- Can further reduce route discovery overhead
- A single route discovery may yield many routes to the destination, due to intermediate nodes replying from local caches

Dynamic Source Routing: Disadvantages

Size

- Packet header size grows with route length
- Packets
 - Flood of route requests may reach all nodes

Timing

- Must avoid route requests collisions
 - Insertion of random delays before forwarding RREQ
- Route Reply Storm problem
 - Too many nodes reply using local cache
 - Prevent a node from sending RREP if it hears another RREP with a shorter route

Dynamic Source Routing: Disadvantages

Pollution

- An intermediate node may send Route Reply using a stale cached route
- Need some mechanism to purge (potentially) invalid cached routes
- For some proposals for cache invalidation
 - Static timeouts
 - Adaptive timeouts based on link stability

Flooding of Control Packets

- How to reduce the scope of the route request flood ?
 - LAR
- How to reduce redundant broadcasts ?
 - The Broadcast Storm Problem

Location-Aided Routing (LAR)

- Exploit location information to limit scope of flood
 - Location information may be obtained using GPS

Expected Zone

- A region that is expected to hold the current location of the destination
- Determined based on potentially old location information and knowledge of the destination's speed
- Route requests limited to a Request Zone that contains the Expected Zone and location of the sender node

Expected Zone in LAR

- X = last known location of node D, at time t0
- Y = location of node D at current time t1, unknown to node S
- r = (tl t0) * estimate of D's speed

Request Zone in LAR

LAR

Zone

- Explicitly specified in the route request
- Each node must know its physical location to determine whether it is within the request zone

Forwarding

Only nodes within the request zone forward route requests

Failure

- Initiate another route discovery (after a timeout) using a larger request zone
- the larger request zone may be the entire network

Rest of route discovery protocol similar to DSR

Location Aided Routing (LAR)

Advantages

- Reduces the scope of route request flood
- Reduces overhead of route discovery

Disadvantages

- Nodes need to know their physical locations
- Does not take into account possible existence of obstructions for radio transmissions

Broadcast Storm Problem

- When node A broadcasts a route query, nodes B and C both receive it
 - B and C both forward to their neighbors
 - B and C transmit at about the same time since they are reacting to receipt of the same message from A
 - This results in a high probability of collisions

Broadcast Storm Problem

Redundancy

A given node may receive the same route request from too many nodes, when one copy would have sufficed

Node D may receive from nodes B and C

Solutions for Broadcast Storm

- Probabilistic scheme
 - Re-broadcast (forward) the request with probability
 P
 - Re-broadcasts by different nodes should be staggered by using a collision avoidance technique
 - Reduce the probability that nodes B and C would forward a packet simultaneously

Solutions for Broadcast Storm

Counter-Based Scheme

If node E hears more than k neighbors broadcasting a given route request, before it can itself forward it, then node E will not forward the request

Intuition

k neighbors together have probably already forwarded the request to all of E's neighbors

Solutions for Broadcast Storm

Distance-Based Scheme

 If node E hears RREQ broadcasted by some node Z within physical distance d, then E will not re-broadcast the request

Intuition

 Z and E are close, so transmission areas covered by Z and E are not very different

Summary: Broadcast Storm Problem

- Flooding is used in many protocols, such as Dynamic Source Routing (DSR)
- Problems associated with flooding
 - Collisions
 - May be reduced by "jittering" (waiting for a random interval before propagating the flood)
 - Redundancy
 - May be reduced by selectively re-broadcasting packets from only a subset of the nodes

Ad Hoc On-Demand Distance Vector Routing (AODV)

Source routing

- Large headers
- Particularly when data contents of a packet are small

> AODV

- Maintaining routing tables at the nodes
- Routes are maintained only between nodes which need to communicate

AODV

Route Requests (RREQ)

Forwarded in a manner similar to DSR

Routes

- When a node re-broadcasts a Route Request, it sets up a reverse path pointing towards the source
- AODV assumes symmetric (bi-directional) links

Destination

Destination replies to Route Request with a Route Reply

Route Reply

Follows reverse path set-up by Route Request
Route Requests in AODV

Route Requests in AODV

Route Requests in AODV

Reverse Path Setup in AODV

Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Reverse Path Setup in AODV

Reverse Path Setup in AODV

Node D does not forward RREQ, because node D is the intended target of the RREQ

Route Reply in AODV

Route Reply in AODV

Intermediate node reply

Send a Route Reply (RREP) if it knows a more recent path than the one previously known to sender

Sequence Numbers

Destination sequence numbers are used to determine age

Fewer intermediate replies than DSR

- A new Route Request for a destination is assigned a higher destination sequence number
- An intermediate node that knows a route with a smaller sequence number cannot send Route Reply

Forward Path Setup in AODV

Forward links are setup when RREP travels along the reverse path

Data Delivery in AODV

- Routing table entries used to forward data packet
- Route is not included in packet header

Timeouts

- Routing table entries
 - Reverse Paths
 - Purged after a timeout interval
 - Timeout should be long enough to allow RREP to come back
 - Forward Paths
 - If no is data being sent using a particular routing table entry
 - Entry is deleted from the routing table (even if the route may actually still be valid)

Link Failure Reporting

Link Failure

When the next hop link in a routing table entry breaks, all active neighbors are informed

Active neighbors

Any neighbor that sent a packet within active_route_timeout interval which was forwarded using that entry

Link failures

- Propagated by means of Route Error messages
- Also update destination sequence numbers

Link Failure Detection

Hello messages

- Neighboring nodes periodically exchange hello message
- Absence of hello message is used as an indication of link failure

Alternatively

Failure to receive several MAC-level acknowledgement may be used as an indication of link failure

Why Sequence Numbers in AODV

- To avoid using old/broken routes
 - To determine which route is newer
- To prevent formation of loops

- RERR sent by C is lost
 - A does not know about failure of link C-D
- C performs a route discovery for D
 - Node A receives the RREQ (say, via path C-E-A)
- Node A replies since A knows a route to D via node B
- Results in a loop (for instance, C-E-A-B-C)

Why Sequence Numbers in AODV

Optimization: Expanding Ring Search

Route Requests

- Initially sent with small Time-to-Live (TTL) field, to limit propagation
- DSR also includes a similar optimization
- If no Route Reply is received
 - Larger TTL

Summary: AODV

- Routes need not be included in packet headers
- Nodes maintain routing tables
 - Entries only for routes that are in active use
- At most one next-hop per destination maintained at each node
 - DSR may maintain several routes for a single destination
- Unused routes expire even if topology does not change

Some Variations

© CS/ECE 439 Staff, University of Illinois

Fall 2023

Power-Aware Routing

- Define optimization criteria as a function of energy consumption
- Examples
 - Minimize energy consumed per packet
 - Minimize time to network partition due to energy depletion
 - Maximize duration before a node fails due to energy depletion

Power-Aware Routing

Assign a weight to each link

Weight of a link may be a function of

- Energy consumed when transmitting a packet
- Residual energy level
- Low residual energy level may correspond to a high cost

Prefer a route with the smallest aggregate weight

Link Stability-Based Routing

Idea

 A node X re-broadcasts a Route Request received from Y only if the (X,Y) link is deemed to have a strong signal stability

Signal stability

Evaluated as a moving average of the signal strength of packets received on the link in recent past

Alternative approach

Assign a cost as a function of signal stability

Connection Stability-Based Routing

- Only utilize links that have been stable for some minimum duration
 - If a link has been stable beyond some minimum threshold
 - It is likely to be stable for a longer interval
 - If it has not been stable longer than the threshold
 - It may soon break (could be a transient link)
- Prefer paths with high aggregate stability