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Wireless Multihop Networks
 Vehicular Networks
 Delay Tolerant (batch) sending over several hops carry data to a base 

station

 Common in Sensor Network for periodically transmitting data
 Infrastructure Monitoring

 E.g., structural health monitoring of the Golden Gate Bridge

 Multihop networking for Internet connection sharing
 Routing traffic over several hops to base station connected to Internet
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Multi-Hop Wireless Networks
 In an ideal world …
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Multi-Hop Wireless Networks
 In an ideal world …

Spring 2019© CS/ECE 439 Staff, University of Illinois

1

2

3

4

5

6

7
89

10
Source

A
B

C

D

Destination

11

12



Multi-Hop Wireless Networks

 Reality check …

 Problem 1
 Node A can’t use both links at the same 

time

Spring 2019© CS/ECE 439 Staff, University of Illinois

1

2

3

4

5

6

7

8

9

10

11

12

Source

A
B

C

D

Destination

Shared channel
Send or receive, not both



Multi-Hop Wireless Networks
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 Problem 2
 Can’t use both links at the same time



 Reality check …

 Problem 3
 Lots of contention for the channels
 Everyone wants to send

Multi-Hop Wireless Networks
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 Reality check …

 Problem 4
 TCP uses ACKS and bidirectional channels
 Even more contention!

Multi-Hop Wireless Networks
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When the network just isn’t there …
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 Ad hoc networks
 Group of cooperating nodes
 Nodes are mobile
 Paths eventual exist between a src/dst pair
 All nodes are routers

 Sensor networks
 Similar to ad hoc networks
 Nodes are typically non-mobile
 Target long operating lifetimes

 Opportunistic networks
 Nodes are mobile
 Paths may never exist between a src/dst pair
 Store-carry-forward



Ad Hoc Networks
 Formed by wireless hosts that may be mobile
 Without (necessarily) using a pre-existing infrastructure
 Routes between nodes may potentially contain multiple 

hops
 Mobility causes route changes
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Why Ad Hoc Networks ?
 Ease of deployment
 Speed of deployment
 Decreased dependence on infrastructure
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Many Variations
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 Fully Symmetric Environment
 All nodes have identical capabilities and responsibilities

 Asymmetric Capabilities
 Transmission ranges and radios may differ 
 Battery life at different nodes may differ
 Processing capacity may be different at different nodes
 Speed of movement

 Asymmetric Responsibilities
 Only some nodes may route packets 
 Some nodes may act as leaders of nearby nodes (e.g., 

cluster head)



Many Variations
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 Traffic characteristics may differ in different ad 
hoc networks
 Bit rate
 Timeliness constraints
 Reliability requirements
 Unicast / multicast / geocast
 Host-based addressing / content-based addressing / 

capability-based addressing

 May co-exist (and co-operate) with an 
infrastructure-based network



Many Variations

Fall 2023© CS/ECE 439 Staff, University of Illinois

 Mobility characteristics
 Speed 
 Predictability 
 Direction of movement
 Pattern of movement

 Uniformity (or lack thereof) of mobility 
characteristics among different nodes



Challenges
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 Limited wireless transmission range
 Broadcast nature of the wireless medium
 Hidden terminal problem

 Packet losses due to transmission errors
 Mobility-induced route changes
 Mobility-induced packet losses
 Battery constraints
 Potentially frequent network partitions
 Ease of snooping on wireless transmissions



The Holy Grail
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 A one-size-fits-all solution
 Perhaps using an adaptive/hybrid approach that can 

adapt to situation at hand

 Difficult problem

 Many solutions proposed trying to address a 
sub-space of the problem domain



Unicast Routing in Ad Hoc Networks
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Why is routing in wireless ad hoc networks 
different/difficult?
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 Link instability causes many routing issues
 Shortest hop routing often worst choice
 Scarce bandwidth makes overhead conspicuous
 Battery power a concern
 Security and misbehavior …

 Host mobility
 Link failure/repair due to mobility may have different 

characteristics than those due to other causes
 Rate of link failure/repair may be high when nodes move fast

 New performance criteria may be used
 Route stability despite mobility
 Energy consumption



Routing in Mobile Networks
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 Imagine hundreds of hosts moving
 Routing algorithm needs to cope up with varying 

wireless channel and node mobility
Where’s 

RED



Unicast Routing Protocols
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 Many protocols have been proposed
 Some have been invented specifically for ad hoc 

networks
 Others are adapted from wired network routing

 No single protocol works well in all 
environments
 Some attempts made to develop adaptive protocols



Routing Protocols
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 Proactive protocols
 Determine routes independent of traffic pattern
 Traditional link-state and distance-vector routing 

protocols are proactive

 Reactive protocols
 Maintain routes only if needed

 Hybrid protocols
 Maintain routes to nearby nodes
 Discover routes for far away nodes



Trade-Off
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 Latency of route discovery
 Proactive protocols 
 May have lower latency since routes are maintained at all 

times

 Reactive protocols
 May have higher latency because a route from X to Y will 

be found only when X attempts to send to Y



Trade-Off
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 Overhead of route discovery/maintenance
 Reactive protocols 
 May have lower overhead since routes are determined 

only if needed

 Proactive protocols 
 Can (but not necessarily) result in higher overhead due to 

continuous route updating

 Which approach achieves a better trade-off 
depends on the traffic and mobility patterns



Flooding for Data Delivery
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 Sender
 Broadcasts data packet P to all its neighbors

 Intermediate nodes
 Forward P to its neighbors

 Sequence numbers 
 Used to avoid the possibility of forwarding the same 

packet more than once
 Destination
 Packet P reaches destination D provided that D is 

reachable from sender S
 Node D does not forward the packet



Flooding for Data Delivery
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Flooding for Data Delivery
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Flooding for Data Delivery
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 Node H receives packet from two neighbors: 
potential for collision
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Flooding for Data Delivery
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 Node C receives packet from G and H, but 
does not forward it again, because node C has 
already forwarded that packet once
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Flooding for Data Delivery
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 Nodes J and K both broadcast packet to node D
 Since nodes J and K are hidden from each other, their 

transmissions may collide 
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Flooding for Data Delivery
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 Nodes J and K both broadcast packet to node D
=> Packet may not be delivered to node D at all, 
despite the use of flooding
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Flooding for Data Delivery
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 Node D does not forward packet, because 
node D is the intended destination
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Flooding for Data Delivery
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 Flooding completed
 Nodes unreachable from S do not receive packet (e.g., 

Z)
 Nodes for which all paths from S go through D also do 

not receive packet (example: N)
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Flooding for Data Delivery
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 Flooding may deliver packets to too many 
nodes
 worst case, all nodes reachable from sender may 

receive the packet
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Flooding for Data Delivery: Advantages
 Simplicity
 Efficiency
 Low rate of information transmission 
 Overhead of explicit route discovery/maintenance 

incurred by other protocols is relatively higher
 For example, when nodes transmit small data packets 

relatively infrequently, and many topology changes occur 
between consecutive packet transmissions

 Potentially higher reliability of data delivery
 Because packets may be delivered to the 

destination on multiple paths
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Flooding for Data Delivery: Disadvantages

 Potentially, very high overhead
 Data packets may be delivered to too many nodes 

who do not need to receive them

 Potentially lower reliability of data delivery
 Flooding uses broadcasting
 Hard to implement reliable broadcast
 Broadcast in IEEE 802.11 MAC is unreliable

 e.g., nodes J and K may transmit to node D simultaneously, 
resulting in loss of the packet 

 In this case, destination would not receive the packet at all  

Fall 2023© CS/ECE 439 Staff, University of Illinois



Flooding of Control Packets
 Many protocols perform (potentially limited) flooding 

of control packets, instead of data packets
 The control packets are used to discover routes
 Discovered routes are subsequently used to send data 

packet(s)

 Overhead of control packet flooding is amortized 
over data packets transmitted between consecutive 
control packet floods
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Dynamic Source Routing (DSR)
 Route Discovery
 When node S wants to send a packet to node D, 

but does not know a route to D, node S initiates a 
route discovery

 Source node S floods Route Request (RREQ) 
 Each node appends own identifier when forwarding 

RREQ
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Route Discovery in DSR
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Route Discovery in DSR
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 [X,Y]: list of identifiers appended to RREQ

Broadcast 
transmission
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Route Discovery in DSR
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 Node H receives packet RREQ from two 
neighbors: potential for collision
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Route Discovery in DSR
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 Node C receives RREQ from G and H
 Node C does not forward it again, because node C 

has already forwarded RREQ once
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Route Discovery in DSR

Fall 2023© CS/ECE 439 Staff, University of Illinois

 Nodes J and K both broadcast RREQ to node 
D
 Since nodes J and K are hidden from each other, 

their transmissions may collide 
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Route Discovery in DSR
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  Node D does not forward RREQ, because 
node D is the intended target of the route 
discovery
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Route Reply in DSR
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 Destination D
 On receiving the first RREQ, send a Route Reply (RREP)
 RREP is sent on a route obtained by reversing the route 

appended to received RREQ
 RREP includes the route from S to D on which RREQ was 

received by node D
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Route Reply in DSR
 Route Reply 
 Bi-directional links

 Reverse route in Route Request (RREQ) 
 RREQ should be forwarded only if received on a link that is known to be bi-

directional
 Unidirectional (asymmetric) links 

 RREP may need a route discovery for S from node D 
 Route Reply is piggybacked on  the Route Request from D

 Unless node D already knows a route to node S

 IEEE 802.11 MAC 
 Links must be bi-directional (since ACK is used)

Fall 2023© CS/ECE 439 Staff, University of Illinois



Dynamic Source Routing (DSR)
 On receiving RREP
 Cache the route included in the RREP

 Sending
 The entire route is included in the packet header
 Hence the name source routing

 Intermediate nodes 
 Use the source route included in a packet to determine to 

whom a packet should be forwarded
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Data Delivery in DSR
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 Packet header size grows with route length
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When to Perform a Route Discovery
 When node S wants to send data to node D, 

but does not know a valid route node D
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DSR Optimization: Route Caching
 Caching
 Each node caches a new route it learns by any means
 Snooping

 A node may also learn a route when it overhears Data packets

 Use of Route Caching
 Broken routes

 Use another route from the local cache
 Otherwise, initiate new route discovery

 Intermediate response
 On receiving a Route Request for some node D

 Node X can send a Route Reply if node X knows a route to node D

 Use of route cache 
 Speed up route discovery
 Reduce propagation of route requests
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Use of Route Caching
 Broken routes
 Use another route from the local cache
 Otherwise, initiate new route discovery

 Intermediate response
 On receiving a Route Request for some node D

 Node X can send a Route Reply if node X knows a route to node D

 Use of route cache 
 Speed up route discovery
 Reduce propagation of route requests
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Use of Route Caching
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 [P,Q,R]   Represents cached route at a node
 DSR maintains the cached routes in a tree format
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Use of Route Caching:
Speed up Route Discovery
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 Z sends a route request for node C
 Node K sends back a route reply [Z,K,G,C] to 

node Z using a locally cached route
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Use of Route Caching:
Reduce of Route Requests
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 No link between D and Z
 Route Reply (RREP) from node K limits flooding of 

RREQ
 In general, the reduction may be less dramatic.
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Route Error (RERR)
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 When attempt to forward the data packet S (with 
route SEFJD) on J-D fails
 J sends a route error to S along J-F-E-S
 Nodes hearing RERR update their route cache to 

remove link J-D
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Route Caching: Beware!
 Stale caches 
 Can adversely affect performance

 Timeliness
 With passage of time and host mobility, cached routes may 

become invalid
 Know when to give up
 A sender host may try several stale routes (obtained from 

local cache, or replied from cache by other nodes), before 
finding a good route
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Dynamic Source Routing: Advantages
 On-demand
 Routes maintained only between nodes that need to 

communicate
 Reduces overhead of route maintenance

 Route caching 
 Can further reduce route discovery overhead
 A single route discovery may yield many routes to the 

destination, due to intermediate nodes replying from local 
caches
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Dynamic Source Routing: Disadvantages
 Size
 Packet header size grows with route length

 Packets
 Flood of route requests may reach all nodes 

 Timing
 Must avoid route requests collisions 

 Insertion of random delays before forwarding RREQ
 Route Reply Storm problem

 Too many nodes reply using local cache
 Prevent a node from sending RREP if it hears another RREP with a 

shorter route
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Dynamic Source Routing: Disadvantages
 Pollution

 An intermediate node may send Route Reply using a stale 
cached route

 Need some mechanism to purge (potentially) invalid 
cached routes

 For some proposals for cache invalidation
 Static timeouts
 Adaptive timeouts based on link stability
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Flooding of Control Packets
 How to reduce the scope of the route request 

flood ?
 LAR

 How to reduce redundant broadcasts ?
 The Broadcast Storm Problem
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Location-Aided Routing (LAR) 
 Exploit location information to limit scope of 

flood
 Location information may be obtained using GPS

 Expected Zone
 A region that is expected to hold the current location 

of the destination
 Determined based on potentially old location 

information and knowledge of the destination’s speed
 Route requests limited to a Request Zone that 

contains the Expected Zone and location of the 
sender node
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Expected Zone in LAR
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 X = last known location of node D, at time t0
 Y = location of node D at current time t1, unknown 

to node S
 r = (t1 - t0) * estimate of D’s speed
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Request Zone in LAR
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LAR
 Zone
 Explicitly specified in the route request
 Each node must  know its physical location to determine 

whether it is within the request zone
 Forwarding
 Only nodes within the request zone forward route requests

 Failure
 Initiate another route discovery (after a timeout) using a 

larger request zone
 the larger request zone may be the entire network

 Rest of route discovery protocol similar to DSR
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Location Aided Routing (LAR)
 Advantages
 Reduces the scope of route request flood
 Reduces overhead of route discovery

 Disadvantages
 Nodes need to know their physical locations
 Does not take into account possible existence of 

obstructions for radio transmissions
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Broadcast Storm Problem
 When node A broadcasts a route query, nodes 

B and C both receive it
 B and C both forward to 

their neighbors
 B and C transmit at about 

the same time since they 
are reacting to receipt of 
the same message from A

 This results in a high 
probability of collisions
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A
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Broadcast Storm Problem
 Redundancy
 A given node may receive the same route request 

from too many 
nodes, when one 
copy would have 
sufficed

 Node D may receive 
from nodes B and C B

D

C

A
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Solutions for Broadcast Storm
 Probabilistic scheme
 Re-broadcast (forward) the request with probability 

p
 Re-broadcasts by different nodes should be 

staggered by using a collision avoidance technique
 Reduce the probability that nodes B and C would 

forward a packet simultaneously 
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Solutions for Broadcast Storm
 Counter-Based Scheme
 If node E hears more than k neighbors broadcasting 

a given route request, before it can itself forward it, 
then node E will not forward the request

 Intuition
 k neighbors together have probably already 

forwarded the request to all of E’s neighbors
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Solutions for Broadcast Storm
 Distance-Based Scheme
 If node E hears RREQ 

broadcasted by some node 
Z within physical distance d, 
then E will not re-broadcast 
the request 

 Intuition
 Z and E are close, so 

transmission areas covered 
by Z and E are not very 
different

E
Z

<d
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Summary: Broadcast Storm Problem
 Flooding is used in many protocols, such as Dynamic 

Source Routing (DSR)
 Problems associated with flooding
 Collisions 

 May be reduced by “jittering” (waiting for a random interval before 
propagating the flood)

 Redundancy 
 May be reduced by selectively re-broadcasting packets from only a 

subset of the nodes
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Ad Hoc On-Demand Distance Vector 
Routing (AODV)

 Source routing
 Large headers
 Particularly when data contents of a packet are 

small

 AODV 
 Maintaining routing tables at the nodes
 Routes are maintained only between nodes which 

need to communicate
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AODV
 Route Requests (RREQ) 
 Forwarded in a manner similar to DSR

 Routes
 When a node re-broadcasts a Route Request, it sets up a reverse path 

pointing towards the source
 AODV assumes symmetric (bi-directional) links

 Destination
 Destination replies to Route Request with a Route Reply

 Route Reply 
 Follows reverse path set-up by Route Request
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Route Requests in AODV
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Route Requests in AODV

Broadcast transmission
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Route Requests in AODV
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Reverse Path Setup in AODV
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 Node C receives RREQ from G and H, but 
does not forward it again, because node C has 
already forwarded RREQ once
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Reverse Path Setup in AODV
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Reverse Path Setup in AODV
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 Node D does not forward RREQ, because 
node D is the intended target of the RREQ
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Route Reply in AODV
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Route Reply in AODV
 Intermediate node reply
 Send a Route Reply (RREP) if it knows a more recent path than the one 

previously known to sender

 Sequence Numbers
 Destination sequence numbers are used to determine age

 Fewer intermediate replies than DSR
 A new Route Request for a destination is assigned a higher destination 

sequence number
 An intermediate node that knows a route with a smaller sequence 

number cannot send Route Reply
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Forward Path Setup in AODV
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 Forward links are setup when RREP travels 
along the reverse path
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Data Delivery in AODV
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 Routing table entries used to forward data 
packet

 Route is not included in packet header
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Timeouts
 Routing table entries
 Reverse Paths
 Purged after a timeout interval
 Timeout should be long enough to allow RREP to come 

back

 Forward Paths
 If no is data being sent using a particular routing table 

entry
 Entry is deleted from the routing table (even if the route may 

actually still be valid)
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Link Failure Reporting
 Link Failure
 When the next hop link in a routing table entry 

breaks, all active neighbors are informed
 Active neighbors
 Any neighbor that sent a packet within 

active_route_timeout interval which was forwarded using 
that entry

 Link failures 
 Propagated by means of Route Error messages 
 Also update destination sequence numbers
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Link Failure Detection
 Hello messages
 Neighboring nodes periodically exchange hello 

message
 Absence of hello message is used as an indication of 

link failure
 Alternatively
 Failure to receive several MAC-level 

acknowledgement may be used as an indication of 
link failure
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Why Sequence Numbers in AODV
 To avoid using old/broken routes
 To determine which route is newer

 To prevent formation of loops

 RERR sent by C is lost 
 A does not know about failure of link C-D 

 C performs a route discovery for D
 Node A receives the RREQ (say, via path C-E-A)

 Node A replies since A knows a route to D via node B
 Results in a loop (for instance, C-E-A-B-C )

A B C D

E
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Why Sequence Numbers in AODV

 Loop C-E-A-B-C

A B C D

E
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Optimization: Expanding Ring Search
 Route Requests
 Initially sent with small Time-to-Live (TTL) field, to 

limit propagation
 DSR also includes a similar optimization

 If no Route Reply is received
 Larger TTL 
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Summary: AODV
 Routes need not be included in packet headers
 Nodes maintain routing tables
 Entries only for routes that are in active use

 At most one next-hop per destination 
maintained at each node
 DSR may maintain several routes for a single 

destination

 Unused routes expire even if topology does 
not change

Fall 2023© CS/ECE 439 Staff, University of Illinois



Some Variations

Fall 2023© CS/ECE 439 Staff, University of Illinois



Power-Aware Routing 
 Define optimization criteria as a function of 

energy consumption
 Examples
 Minimize energy consumed per packet
 Minimize time to network partition due to energy 

depletion
 Maximize duration before a node fails due to 

energy depletion
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Power-Aware Routing 
 Assign a weight to each link

 Weight of a link may be a function of 
 Energy consumed when transmitting a packet
 Residual energy level
 Low residual energy level may correspond to a high cost

 Prefer a route with the smallest aggregate weight
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Link Stability-Based Routing
 Idea
 A node X re-broadcasts a Route Request received 

from Y only if the (X,Y) link is deemed to have a 
strong signal stability

 Signal stability
 Evaluated as a moving average of the signal strength 

of packets received on the link in recent past

 Alternative approach 
 Assign a cost as a function of signal stability
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Connection Stability-Based Routing
 Only utilize links that have been stable for 

some minimum duration
 If a link has been stable beyond some minimum 

threshold
 It is likely to be stable for a longer interval

 If it has not been stable longer than the threshold
 It may soon break (could be a transient link)

 Prefer paths with high aggregate stability
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