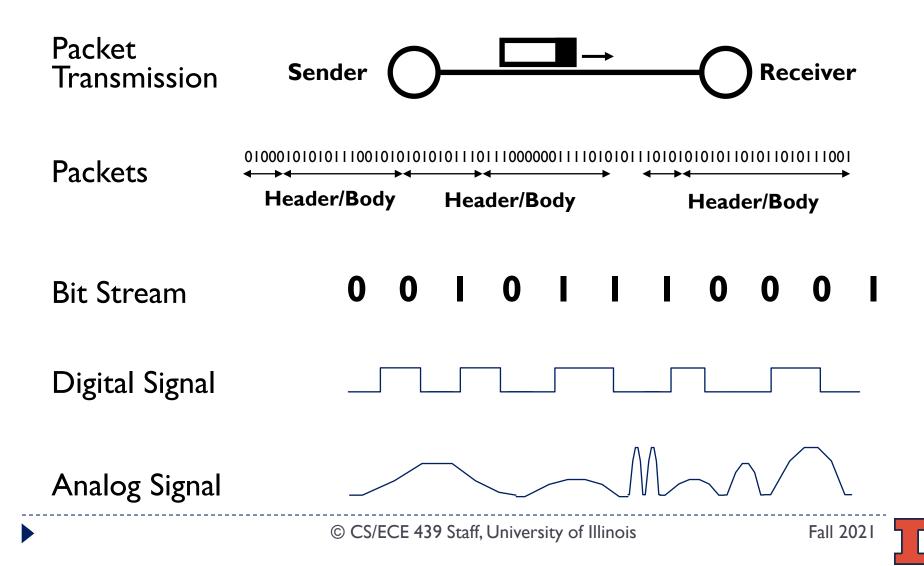
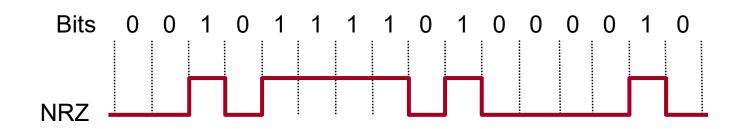
CS/ECE 439: Wireless Networking


Physical Layer – Coding and Modulation

From Signals to Packets

Binary Voltage Encoding

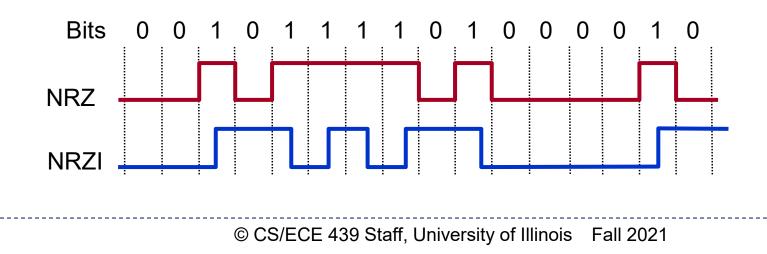

- Common binary voltage encodings
 - Non-return to zero (NRZ)
 - NRZ inverted (NRZI)
 - Manchester (used by IEEE 802.3—10 Mbps Ethernet)
 - ► 4B/5B

Non-Return to Zero (NRZ)

- Signal to Data
 - ► High → I
 - ► Low ⇒ 0

Comments

- Transitions maintain clock synchronization
- Long strings of 0s confused with no signal
- Long strings of Is causes baseline wander
- Both inhibit clock recovery

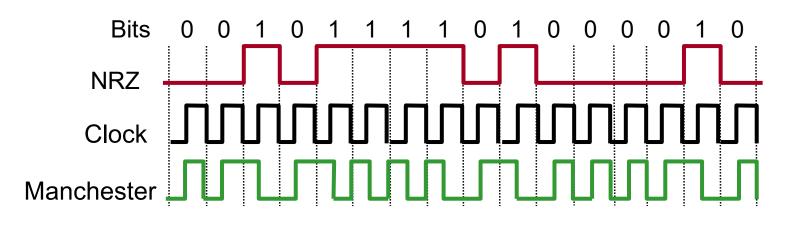


Non-Return to Zero Inverted (NRZI)

Signal to Data

- ► Transition □ □ □
- Maintain ⇒ 0
- Comments

Solves series of Is, but not 0s



Manchester Encoding

- Signal to Data
 - XOR NRZ data with clock
 - ► High to low transition □ I
 - Low to high transition \Rightarrow 0

Comments

- (used by IEEE 802.3—10 Mbps Ethernet)
- Solves clock recovery problem
- Only 50% efficient (1/2 bit per transition)

4B/5B

Signal to Data

• Encode every 4 consecutive bits as a 5 bit symbol

Symbols

- At most I leading 0
- At most 2 trailing 0s
- Never more than 3 consecutive 0s
- Transmit with NRZI

Comments

- I6 of 32 possible codes used for data
- At least two transitions for each code
- 80% efficient

4B/5B – Data Symbols

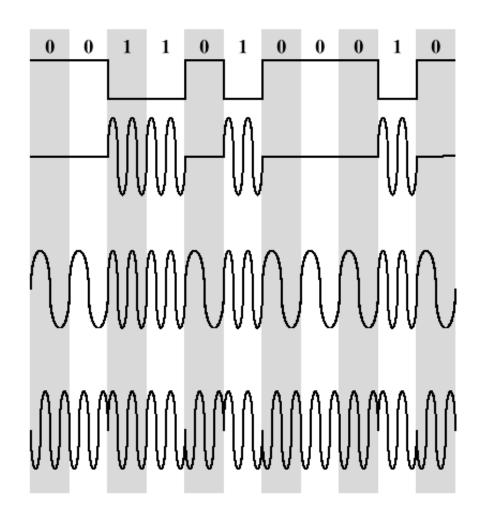
At most 1 leading 0

- ▶ 0000 ⇒
- ▶ 0001 ⇒
- ▶ 0010 \Rightarrow
- ▶ 0011 ⇒
- ▶ 0100 \Rightarrow
- ▶ 0101 \Rightarrow
- ▶ 0110 ⇒
- 0111

At most 2 trailing 0s

- \Rightarrow
- \Rightarrow
- $1101 \Rightarrow$

4B/5B – Control Symbols


- idle

- ► 11000 ⇒
- ► 10001 ⇒
- ▶ 01101 ⇒
- ▶ 00111 ⇒
- ▶ 00100 ⇒
- Other \Rightarrow

start of stream I start of stream 2 end of stream I end of stream 2 transmit error invalid

Basic Modulation Techniques

- Encode digital data in an analog signal
- Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
- Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
- Phase-shift keying (PSK)
 - Phase of carrier signal shifted

Amplitude-Shift Keying

- Binary digit (I)
 - Represented by presence of carrier, at constant amplitude
- Binary digit (0)
 - Represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is $Acos(2\pi f_c t)$

Inefficiencies

- Sudden gain changes
- Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber

Binary Frequency-Shift Keying (BFSK)

- Binary digits (0 and 1)
 - Represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

- where f₁ and f₂ are offset from carrier frequency f_c by equal but opposite amounts
- Less susceptible to error than ASK
- Sometimes used for radio (3 to 30 MHz) or coax
- Demodulator looks for power around f_1 and f_2

Multiple Frequency-Shift Keying (MFSK)

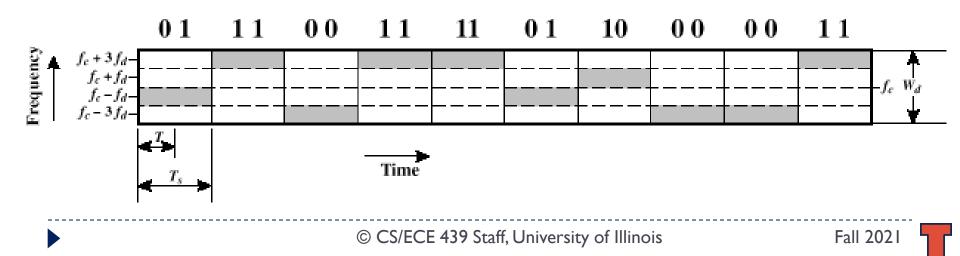
More than two frequencies are used

More bandwidth efficient but more susceptible to error

$$s_i(t) = A\cos 2\pi f_i t$$
 $1 \le i \le M$

$$f_i = f_c + (2i - I - M)f_d$$

$$f_c$$
 = the carrier frequency


•
$$f_d$$
 = the difference frequency

- M = number of different signal elements = 2^{*L*}
- L = number of bits per signal element

Multiple Frequency-Shift Keying (MFSK)

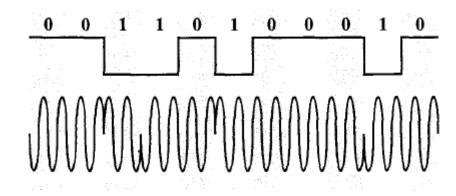
More than two frequencies are used

- More bandwidth efficient but more susceptible to error
- Each symbol represents L bits
 - Symbol length is $T_s = LT$ seconds, where T is the bit period

Two-level PSK (BPSK)

Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$


Differential PSK (DPSK)

- Phase shift with reference to previous bit
 - Binary 0

□ Signal of same phase as previous signal burst

Binary I

□ Signal of opposite phase to previous signal burst

Four-level PSK (QPSK)

- Each element represents more than one bit
- Ex. Phase shift of multiples of 2π (90°)

Multilevel PSK

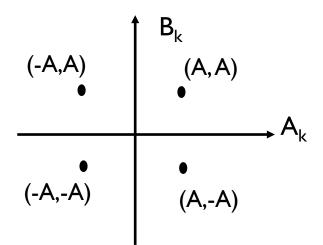
- Each angle has more than one amplitude
- Multiple signals elements

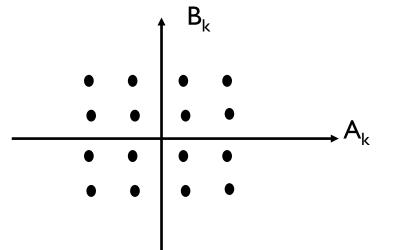
$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

- D = modulation rate, baud
- R = data rate, bps
- M = number of different signal elements = 2^L
- L = number of bits per signal element

Quadrature Amplitude Modulation (QAM)

QAM uses two-dimensional signaling

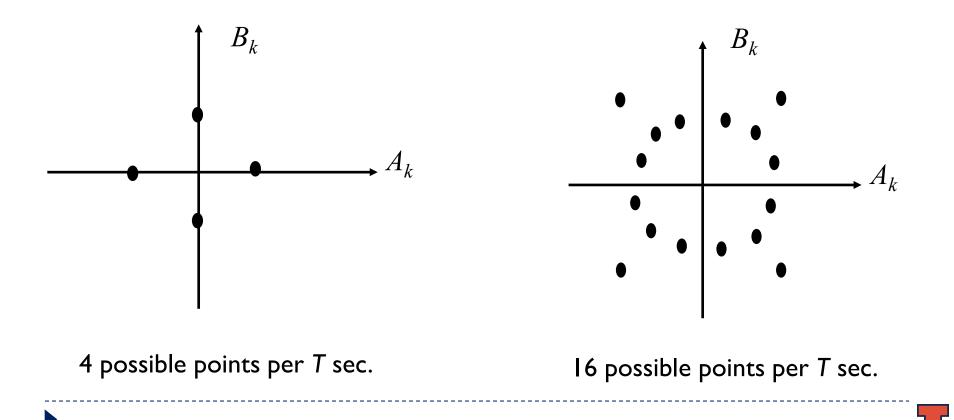

- ASK and PSK
- A_k modulates in-phase
- B_k modulates quadrature phase $sin(2\pi f_c t)$


$$s(t) = A_k(t)\cos 2\pi f_c t + B_k(t)\sin 2\pi f_c t$$

 $\cos(2\pi f_c t)$

Signal Constellations

Each pair (A_k, B_k) defines a point in the plane
Signal constellation set of signaling points



4 possible points per *T* sec.2 bits / pulse

I 6 possible points per T sec.4 bits / pulse

Other Signal Constellations

Point selected by amplitude & phase

Adapting to Channel Conditions

- Channel conditions vary
 - Physical environment of the channel
 - Changes over time (slow and fast fading)
- Fixed coding/modulation scheme will often be inefficient
 - Too conservative for good channels
 - Too aggressive for bad channels
- Adjust coding/modulation based on channel conditions – "rate" adaptation
 - Controlled by the MAC protocol
 - E.g. 802.11a: BPSK QPSK 16-QAM 64 QAM Bad Good

Some Examples

Gaussian Frequency Shift Keying

- I/-I is a positive/negative frequency shift from base
- Gaussian filter is used to smooth pulses— reduces the spectral bandwidth — "pulse shaping"
- Used in Bluetooth

Differential quadrature phase shift keying

- Variant of "regular" frequency shift keying
- Symbols are encoded as changes in phase
- Requires decoding on $\pi/4$ phase shift
- Used in 802.11b networks
- Quadrature Amplitude modulation
 - Combines amplitude and phase modulation
 - Uses two amplitudes and 4 phases to represent the value of a 3 bit sequence