CS/ECE 439: Wireless Networking

Wireless Challenges

The Power of Radio

The Power of Radio

Why is wired networking challenging?

- Speed of light
- Shared infrastructure
- Things break
- Dynamic range
- Security

Getting the data through the pipes

There are no wires!

Several significant advantages

- No need to install and maintain wires
 - Reduces cost important in offices, hotels, …
 - Simplifies deployment important in homes, hotspots, …
- Supports mobile users
 - Move around office, campus, city, ... users get hooked
 - Remote control devices (TV, garage door, ..)
 - Cordless phones, cell phones, ..
 - WiFi, GPRS, WiMax, ...

What's so hard about wireless?

There are no wires!

Wired networks

Links are constant, reliable and physically isolated

Wireless networks

 Links are variable, error-prone and share the ether with each other and other external, uncontrolled sources

Challenges of wireless

Path loss

- Signal attenuation as a function of distance
- Signal-to-noise ratio (SNR Signal Power/Noise Power) decreases, make signal unrecoverable
 - AKA SINR Signal-to-Interference-Noise-Ratio
- Multipath propagation
 - Signal reflects off surfaces, effectively causing selfinterference

Internal interference (from other users)

 Hosts within range of each other collide with one another's transmission

External interference

Microwave is turned on and blocks your signal

Path Loss

- Signal power attenuates by about ~r² factor for omnidirectional antennas in free space
 - r is the distance between the sender and the receiver
- The exponent in the factor is different depending on placement of antennas
 - Less than 2 for directional antennas
 - Faster attenuation
 - Exponent > 2 when antennas are placed on the ground
 - Signal bounces off the ground and reduces the power of the signal

Attenuation and Errors

- Wired networks
 - ► Error rate = 10⁻¹⁰
- Wireless networks
 - Not even close!
 - Signal attenuates with distance and is affected by noise
 - Probability of a successful reception depends on SINR = S/I+N
 - Modulation and coding schemes introduce redundancy to allow for decoding

- Signals bounce off surfaces and interfere with one another
- What happens to the signals that take different paths?
 - Different distance = different attenuation = different signal strength

- Signals bounce off surfaces and interfere with one another
- What happens to the phase of the different signals?
 - Different distance = different travel time = different place in received signal

- What if signals are still in phase at the receiver?
 - In phase signals enhance the received signal strength!

- What if signals are out of phase?
 - Orthogonal signals cancel each other and nothing is received!

Wireless is a shared medium

- Transmitters broadcast
- Devices can operate either in transmit or receive mode
 - Current research is trying to overcome this limitation
- How do you coordinate access to the medium?

Interference

- Noise is naturally present in the environment from many sources
- Interference can be from other users or from malicious sources
- Impacts the throughput users can achieve

What is a Wireless "Link", really?

What is a Wireless "Link", really?

Wireless Bit Errors

- The lower the SNR (Signal/Noise) the higher the Bit Error Rate (BER)
- How can we deal with this?
 - Make the signal stronger
- Why is this not always a good idea?
 - Increased signal strength requires more power
 - Increases the interference range of the sender, so you interfere with more nodes around you
- Error correction can correct some problems

Spread Spectrum

Direct Sequence Spread Spectrum

- Spread the signal over a wider frequency band than required
- Originally designed to thwart jamming
- Original 802.11 uses 83 MHz in 2.4 GHz band
- Frequency-Hopped Spread Spectrum
 - Uses 80 IMHz sub-bands in 2.4 GHz band
 - Transmit over a random sequence of frequencies

Spread Spectrum

Direct Sequence Spread Spectrum

- Spread the Frequency hopping had many inventors
- Originally
- Original
- Frequency
 - Uses 80
 - Transmit

- I942: actress Hedy Lamarr and composer George Antheil patented Secret Communications System
- Piano-roll to change between 88 frequencies, and was intended to make radio-guided torpedoes harder for enemies to detect or to jam
- The patent was rediscovered in the 1950s during patent searches when private companies independently developed Code Division Multiple Access, a civilian form of spread-spectrum

Rate

Defines the communication speeds

Frequency

Defines the behavior in the physical environment

Range

Defines the physical communication area

Power

Defines the cost in terms of energy

Rate

- Defines the communication speeds
- Channel Bandwidth
 - Defined by the specifications of the technology
- Available Bandwidth
 - Defined by the current use of the communication channel
 - □ Channel competition MAC layer
 - □ Bandwidth competition Transport layer

Frequency/signal characteristics

- Defines the behavior in the physical environment
 - Does the signal go through walls?
 - Is the signal susceptible to multipath fading?
- Challenge
 - Many technologies use the same frequency

Range

25

- Defines the physical communication area
- May be affected by buildings, walls, people
- May be affected by distance

Power

26

- Defines the cost in terms of energy
- Power can be adapted to save energy
 - Inversely affects range

Rate

- Defines the communication speeds
- Frequency

Range

Power

Power
Defines the cost is pervised of energy

Medium Access Control

- Different transmitters/receivers use:
 - Different frequencies
 - FDMA Frequency Division Multiple Access
 - Different time slots
 - TDMA Time Division Multiple Access
 - Different codes
 - CDMA Code Division Multiple Access
 - Randomly access the medium
 - CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

Main goal: avoid collisions while making efficient use of the medium

Wireless Losses

Can be due to

Signal errors that lead to a packet that cannot be decoded

OR

- Corruption of the transmitted information due to collisions, SINR=S/(N+I) too low
- Understanding the reason behind a loss requires cross-layer information
 - ► Is it PHY?
 - Is it MAC?

Information required by more than one layer

How Do We Increase Network Capacity?

- Easy to do in wired networks: simply add wires
 - Fiber is especially attractive
- Adding wireless "links" increases interference.
 - Frequency reuse can help ... subject to spatial limitations
 - Or use different frequencies
 ... subject to frequency
 limitations
- The capacity of the wireless network is fundamentally limited

Cellular architecture

- Deploy cells
 - Different frequencies
- Challenge
 - Provide consistent service even at the edge of the cell
 - Deal with intensity given the capacity of the cell

Wi-Fi architecture

- Could be chaotic or managed
- Limited spectrum service guarantees hard to make
- Channel assignment, power control

Mobility Affects the Link Throughput

- Quality of the transmission depends on distance and other factors
 - Covered later in the course
- Affects the throughput mobile users achieve
- Worst case is no connectivity!

Mobility is an Issue even for Stationary Users

 Mobile people and devices affect the transmission channel of stationary nodes

Alice

And It Gets Worse ...

- The impact of mobility on transmission can be complex
- Mobility also affects addressing and routing

Wireless environments: a very naïve model

- The world is flat
- A radio's transmission area is circular
 - Signal strength is a simple function of distance
- All radios have equal range
- If I can hear you, you can hear me (symmetry)
- If I can hear you at all, I can hear you perfectly
- Not all that different from wires, with broadcast communication added

