
CS/ECE 439: Wireless Networking

Transport Layer – dealing with errors and unreliability

© CS 439 Staff, University of Illinois Fall 2020

Fall 2020© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob

Fall 2020© CS 439 Staff, University of Illinois

Reliable Transmission

Hello!

My

Computer’s

name

is

Alice.

My

name

is

Alice.Alice Bob

Reliable Transmission

Fall 2020© CS 439 Staff, University of Illinois

 Suppose error protection identifies valid and
invalid packets
 How?

 Can we make the channel appear reliable?
 Insure packet delivery
 Maintain packet order
 Provide reliability at full link capacity

Reliable Transmission Outline

Fall 2020© CS 439 Staff, University of Illinois

 Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
 A family of algorithms that provide reliability

through retransmission

 ARQ algorithms (simple to complex)
 stop-and-wait
 sliding window
 go-back-n
 selective repeat

Fall 2020© CS 439 Staff, University of Illinois

Terminology
 Acknowledgement (ACK)
 Receiver tells the sender when a frame is received
 Selective acknowledgement (SACK)
 Specifies set of frames received

 Cumulative acknowledgement (ACK)
 Have received specified frame and all previous

 Timeout (TO)
 Sender decides the frame (or ACK) was lost
 Sender can try again

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait
 Basic idea

1. Send a frame
2. Wait for an ACK or TO
3. If TO, go to 1
4. If ACK, get new frame, go to 1

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait: Success

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

RTT

What can go
wrong?

How will it affect
our protocol?

How long should
the timeout be?

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait: Lost Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait: Lost ACK

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait: Delayed Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

How can receiver
distinguish between

two frames?

How many bits do you
need for sequence

numbers?

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait
 Goal
 Guaranteed, at-most-once delivery

 Protocol Challenges
 Dropped frame/ACK
 Duplicate frame/ACK

 Requirements
 1-bit sequence numbers (if physical network maintains

order)
 sender tracks frame ID to send
 receiver tracks next frame ID expected

Fall 2020© CS 439 Staff, University of Illinois

Stop-and-Wait
 We have achieved
 Frames delivered reliably and in order
 Is that enough?

 Problem
 Only allows one outstanding frame

 Does not keep the pipe full
 Example

 100ms RTT
 One frame per RTT = 1KB
 1024x8x10 = 81920 kbps
 Regardless of link bandwidth!

Stop-and-Wait

Fall 2020© CS 439 Staff, University of Illinois

sender receiver

RTT
first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

L / R
RTT + L / R

L / R

RTT + L / R

U

=

sender

Fall 2020© CS 439 Staff, University of Illinois

Keeping the Pipe Full
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

U
sender =

3 * L / R
RTT + L / R

3 * L / R

RTT + L / R

U

=

sender

Fall 2020© CS 439 Staff, University of Illinois

Concepts

 Consider an ordered stream of data frames
 Stop-and-Wait
 Window of one frame
 Slides along stream over time

Time

Fall 2020© CS 439 Staff, University of Illinois

Concepts
 Sliding Window Protocol
 Multiple-frame send window
 Multiple frame receive window

Time

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window
 Send Window
 Fixed length
 Starts at earliest unacknowledged frame
 Only frames in window are active

Time

Sent and
acknowledged

Sent and not
acknowledged

Available, outside
send window Unavailable

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window
 Receive Window
 Fixed length (unrelated to send window)
 Starts at earliest frame not received
 Only frames in window accepted

Received and
acknowledged

Received and not
acknowledged

Received, outside
receive window Not yet received

Time

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Terminology
 Sender Parameters
 Send Window Size (SWS)
 Last Acknowledgement Received (LAR)
 Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Terminology
 Receiver Parameters
 Receive Window Size (RWS)
 Next Frame Expected (NFE)
 Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Fall 2020© CS 439 Staff, University of Illinois

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details
 Sender Tasks
 Assign sequence numbers
 On ACK Arrival
 Advance LAR
 Slide window

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Details
 Receiver Tasks
 On Frame Arrival (N)
 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window

RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Details
 Sequence number space
 Finite number, so wrap around
 Need space larger than SWS (outstanding frames)
 In fact, need twice as large

Window Sizes
 How big should we make SWS?
 Compute from delay x bandwidth

 How big should we make RWS?
 Depends on buffer capacity of receiver

Fall 2020© CS 439 Staff, University of Illinois

Delay x Bandwidth Product - Revisited

Fall 2020© CS 439 Staff, University of Illinois

 Amount of data in “pipe”
 channel = pipe
 delay = length
 bandwidth = area of a cross section
 bandwidth x delay product = volume

Bandwidth

Delay

Delay x Bandwidth Product

Fall 2020© CS 439 Staff, University of Illinois

 Bandwidth x delay product
 How many bits the sender must transmit before

the first bit arrives at the receiver if the sender
keeps the pipe full

 Takes another one-way latency to receive a
response from the receiver

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14

ARQ Algorithm Classification

Fall 2020© CS 439 Staff, University of Illinois

 Three Types:
 Stop-and-Wait:SWS = 1 RWS = 1
 Go-Back-N: SWS = N RWS = 1
 Selective Repeat: SWS = N RWS = M
 Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait

Fall 2020© CS 439 Staff, University of Illinois

Sliding Window Variations: Go-Back-N
 SWS = N, RWS = 1
 Receiver only buffers one frame
 If a frame is lost, the sender may need to retransmit

up to N frames
 i.e., sender “goes back” N frames

 Variations
 How long is the frame timeout?
 Does receiver send NACK for out-of-sequence frame?

Fall 2020© CS 439 Staff, University of Illinois

Go-Back-N: Cumulative ACKs

A

B

Packets 2,3,4,5
are

retransmitted

loss

Timeout for Packet 2

Sliding Window Variations: Selective Repeat

Fall 2020© CS 439 Staff, University of Illinois

 SWS = N, RWS = M
 Receiver individually acknowledges all correctly

received frames
 Buffers up to M frames, as needed, for eventual in-order

delivery to upper layer
 If a frame is lost, sender must only resend
 Frames lost within the receive window

 Variations
 How long is the frame timeout?
 Use cumulative or per-frame ACK?
 Does protocol adapt timeouts?
 Does protocol adapt SWS and/or RWS?

Selective Repeat

Fall 2020© CS 439 Staff, University of Illinois

A

B

Packet 2 is
retransmitted

loss

Fall 2020© CS 439 Staff, University of Illinois

Roles of a Sliding Window Protocol
 Reliable delivery on an unreliable link
 Core function

 Preserve delivery order
 Controlled by the receiver

 Flow control
 Allow receiver to throttle sender

 Separation of Concerns
 Must be able to distinguish between different functions that are

sometimes rolled into one mechanism

TCP Data Transport
 Data broken into segments
 Limited by maximum segment size (MSS)
 Defaults to 352 bytes
 Negotiable during connection setup
 Typically set to

 MTU of directly connected network – size of TCP and IP headers

 Three events cause a segment to be sent
 ≥ MSS bytes of data ready to be sent
 Explicit PUSH operation by application
 Periodic timeout

Fall 2020© CS 439 Staff, University of Illinois

Fall 2020© CS 439 Staff, University of Illinois

TCP Byte Stream

Application
process

Application
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write
bytes

Read
bytes

Send buffer Recv buffer

ACKing and Sequence Numbers

Fall 2020© CS 439 Staff, University of Illinois

 Sender sends packet
 Data starts with sequence number X
 Packet contains B bytes
 X, X+1, X+2, ….X+B-1

byte X byte X+B - 1

B bytes

ACKing and Sequence Numbers

Fall 2020© CS 439 Staff, University of Illinois

 Upon receipt of packet, receiver sends an ACK
 If all data prior to X already received:
 ACK acknowledges X+B (because that is next expected

byte)

byte X+B

B bytes

ACKing and Sequence Numbers

Fall 2020© CS 439 Staff, University of Illinois

 Upon receipt of packet, receiver sends an ACK
 If highest byte already received is some smaller

value Y
 ACK acknowledges Y+1
 Even if this has been ACKed before

byte Y + 1

B bytes

byte Y

TCP Sliding Window Protocol
 Sequence numbers
 Indices into byte stream

 ACK sequence number
 Actually next byte expected as opposed to last byte

received

Fall 2020© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol
 Advertised window
 Enables dynamic receive window size

 Receive buffers
 Data ready for delivery to application until requested
 Out-of-order data to maximum buffer capacity

 Sender buffers
 Unacknowledged data
 Unsent data out to maximum buffer capacity

Fall 2020© CS 439 Staff, University of Illinois

Fall 2020© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol – Sender Side
 LastByteAcked <= LastByteSent

 LastByteSent <= LastByteWritten

 Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but
outside window

Maximum buffer size

Advertised window

Fall 2020© CS 439 Staff, University of Illinois

TCP Sliding Window Protocol – Receiver Side
 LastByteRead < NextByteExpected

 NextByteExpected <= LastByteRcvd + 1

 Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application
Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window

Flow Control vs. Congestion Control
 Flow control
 Preventing senders from overrunning the capacity of the receivers

 Congestion control
 Preventing too much data from being injected into the network, causing

switches or links to become overloaded

 Which one does TCP provide?
 TCP provides both
 Flow control based on advertised window
 Congestion control discussed later in class

Fall 2020© CS 439 Staff, University of Illinois

Advertised Window Limits Rate
 W = window size
 Sender can send no faster than W/RTT bytes/sec
 Receiver implicitly limits sender to rate that

receiver can sustain
 If sender is going too fast, window advertisements

get smaller & smaller

Fall 2020© CS 439 Staff, University of Illinois

Reasons for Retransmission

Fall 2020© CS 439 Staff, University of Illinois
Ti

m
eo

ut
Ti

m
eo

ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?
 Sender sets a timeout to wait for an ACK
 Too short
 wasted retransmissions

 Too long
 excessive delays when packet lost

Fall 2020© CS 439 Staff, University of Illinois

TCP Round Trip Time and Timeout
 How should TCP set its

timeout value?
 Longer than RTT

 But RTT varies

 Too short
 Premature timeout
 Unnecessary retransmissions

 Too long
 Slow reaction to segment loss

 Estimating RTT
 SampleRTT

 Measured time from segment
transmission until ACK receipt

 Will vary
 Want smoother estimated RTT

 Average several recent
measurements
 Not just current SampleRTT

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Idea
 Assumes best-effort network
 Each source determines network capacity for itself
 Implicit feedback
 ACKs pace transmission (self-clocking)

 Challenge
 Determining initial available capacity
 Adjusting to changes in capacity in a timely manner

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Basic idea
 Add notion of congestion window
 Effective window is smaller of
 Advertised window (flow control)
 Congestion window (congestion control)

 Changes in congestion window size
 Slow increases to absorb new bandwidth
 Quick decreases to eliminate congestion

Fall 2020© CS 439 Staff, University of Illinois

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

receiversender

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy
 Self-clocking

 Send data only when outstanding data ACK’d
 Equivalent to send window limitation mentioned

 Growth
 Add one maximum segment size (MSS) per congestion window of

data ACK’d
 It’s really done this way, at least in Linux:
 see tcp_cong_avoid in tcp_input.c.
 Actually, every ack for new data is treated as an MSS ACK’d

 Known as additive increase

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Specific strategy (continued)
 Decrease
 Cut window in half when timeout occurs
 In practice, set window = window /2
 Known as multiplicative decrease

 Additive increase, multiplicative decrease (AIMD)

Additive Increase/ Multiplicative Decrease
 Tools
 React to observance of congestion
 Probe channel to detect more resources

 Observation
 On notice of congestion

 Decreasing too slowly will not be reactive enough

 On probe of network
 Increasing too quickly will overshoot limits

Fall 2020© CS 439 Staff, University of Illinois

Fall 2020© CS 439 Staff, University of Illinois

Additive Increase/ Multiplicative Decrease
 New TCP state variable
 CongestionWindow

 Similar to AdvertisedWindow for flow control
 Limits how much data source can have in transit

 MaxWin = MIN(CongestionWindow, AdvertisedWindow)
 EffWin = MaxWin - (LastByteSent - LastByteAcked)
 TCP can send no faster then the slowest component, network or destination

 Idea
 Increase CongestionWindow when congestion goes down
 Decrease CongestionWindow when congestion goes up

Fall 2020© CS 439 Staff, University of Illinois

Additive Increase/ Multiplicative Decrease
 Question
 How does the source determine whether or not the

network is congested?

 Answer
 Timeout signals packet loss
 Packet loss is rarely due to transmission error (on wired

lines)
 Lost packet implies congestion!

AIMD – Sawtooth Trace
 Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
 Factor of 2

 TCP periodically probes for available bandwidth by increasing
its rate

Fall 2020© CS 439 Staff, University of Illinois

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

Loss

halved

Fall 2020© CS 439 Staff, University of Illinois

TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from

scratch

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

Time (seconds)

70

30
40
50

10

10.0

It could take a long time
to get started!

Fall 2020© CS 439 Staff, University of Illinois

TCP Start Up Behavior
 How should TCP start sending data?
 AIMD is good for channels operating at capacity
 AIMD can take a long time to ramp up to full capacity from

scratch
 Use Slow Start to increase window rapidly from a cold start

TCP Start Up Behavior: Slow Start
 Initialization of the congestion window
 Congestion window should start small
 Avoid congestion due to new connections

 Start at 1 MSS,
 Initially, CWND is 1 MSS
 Initial sending rate is MSS/RTT

 Reset to 1 MSS with each timeout
 timeouts are coarse-grained, ~1/2 sec

Fall 2020© CS 439 Staff, University of Illinois

TCP Start Up Behavior: Slow Start
 Growth of the congestion window
 Linear growth could be pretty wasteful
 Might be much less than the actual bandwidth
 Linear increase takes a long time to accelerate

 Start slow but then grow fast
 Sender starts at a slow rate
 Increase the rate exponentially
 Until the first loss event

Fall 2020© CS 439 Staff, University of Illinois

Slow Start Example

Fall 2020© CS 439 Staff, University of Illinois

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:

Slow Start
 Used
 When first starting connection
 When connection times out

 Why is it called slow-start?
 Because TCP originally had no congestion control

mechanism
 The source would just start by sending a whole window’s

worth of data

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Control
 Maintain threshold window size
 Threshold value

 Initially set to maximum window size
 Set to 1/2 of current window on timeout

 Use multiplicative increase
 When congestion window smaller than threshold
 Double window for each window ACK’d

 In practice
 Increase congestion window by one MSS for each ACK of new data (or

N bytes for N bytes)

Fall 2020© CS 439 Staff, University of Illinois

Fall 2020© CS 439 Staff, University of Illinois

Slow Start

 How long should the exponential
increase from slow start continue?
 Use CongestionThreshold

as target window size

 Estimates network capacity
 When CongestionWindow

reaches
CongestionThreshold switch
to additive increase

Exponential
“slow start”

Linear probing

Fall 2020© CS 439 Staff, University of Illinois

Slow Start

 Initial values
 CongestionThreshold = 8

 CongestionWindow = 1

 Loss after transmission 7
 CongestionWindow currently 12

 Set Congestionthreshold =
CongestionWindow/2

 Set CongestionWindow = 1

Fall 2020© CS 439 Staff, University of Illinois

Slow Start
 Example trace of CongestionWindow

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

KB

70

30
40
50

10

 Problem
 Have to wait for timeout
 Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1

Fall 2020© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery

 Problem
 Coarse-grain TCP

timeouts lead to idle
periods

 Solution
 Fast retransmit: use

duplicate ACKs to
trigger retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

Fall 2020© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery
 Send ACK for each segment received
 When duplicate ACK’s received
 Resend lost segment immediately
 Do not wait for timeout
 In practice, retransmit on 3rd duplicate

 Fast recovery
 When fast retransmission occurs, skip slow start
 Congestion window becomes 1/2 previous
 Start additive increase immediately

Fall 2020© CS 439 Staff, University of Illinois

Fast Retransmit and Fast Recovery
 Results

 Fast Recovery
 Bypass slow start phase
 Increase immediately to one half last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

KB

70

30
40
50

10

Fall 2020© CS 439 Staff, University of Illinois

TCP Congestion Window Trace

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

Co
ng

es
tio

n
W

in
do

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

	CS/ECE 439: Wireless Networking
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission Outline
	Terminology
	Stop-and-Wait
	Stop-and-Wait: Success
	Stop-and-Wait: Lost Frame
	Stop-and-Wait: Lost ACK
	Stop-and-Wait: Delayed Frame
	Stop-and-Wait
	Stop-and-Wait
	Stop-and-Wait
	Keeping the Pipe Full
	Concepts
	Concepts
	Sliding Window
	Sliding Window
	Sliding Window Terminology
	Sliding Window Terminology
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Window Sizes
	Delay x Bandwidth Product - Revisited
	Delay x Bandwidth Product
	ARQ Algorithm Classification
	Sliding Window Variations: Go-Back-N
	Go-Back-N: Cumulative ACKs
	Sliding Window Variations: Selective Repeat
	Selective Repeat
	Roles of a Sliding Window Protocol
	TCP Data Transport
	TCP Byte Stream
	ACKing and Sequence Numbers
	ACKing and Sequence Numbers
	ACKing and Sequence Numbers
	TCP Sliding Window Protocol
	TCP Sliding Window Protocol
	TCP Sliding Window Protocol – Sender Side
	TCP Sliding Window Protocol – Receiver Side
	Flow Control vs. Congestion Control
	Advertised Window Limits Rate
	Reasons for Retransmission
	How Long Should Sender Wait?
	TCP Round Trip Time and Timeout
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	Additive Increase/ Multiplicative Decrease
	Additive Increase/ Multiplicative Decrease
	Additive Increase/ Multiplicative Decrease
	AIMD – Sawtooth Trace
	TCP Start Up Behavior
	TCP Start Up Behavior
	TCP Start Up Behavior: Slow Start
	TCP Start Up Behavior: Slow Start
	Slow Start Example
	Slow Start
	TCP Congestion Control
	Slow Start
	Slow Start
	Slow Start
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	TCP Congestion Window Trace

