CS/ECE 439: Wireless Networking

Physical Layer - Diversity

Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
- Suppose the receiver
 can do some processing
minus:
 the signal

Dynamic Equalization

- Combine multiple delayed copies of the signal ex: linear equalizer circuit

Equalization Discussion

- Use multiple delayed copies of the received signal to try to reconstruct the original signal
- Weights are set dynamically
" Typically based on some known "training" sequence
- Effectively uses the multiple copies of the signal to reinforce each other
- But only works for paths that differ in length by less than the depth of the pipeline

Diversity Techniques

- Spatial diversity
- Exploit fact that fading is location-specific
- Use multiple nearby antennas and combine signals
- Can be directional
- Frequency diversity
- Spread signal over multiple frequencies/broader frequency band
- For example, spread spectrum
- Channel Diversity
" Distribute signal over multiple "channels"
> "Channels" experience independent fading
- Reduces the error, i.e. only part of the signal is affected
- Time diversity
- Spread data out over time
- Expand bit stream into a richer digital signal
- Useful for bursty errors, e.g. slow fading
- A specific form of channel coding

Spatial Diversity

- Use multiple antennas that pick up the signal in slightly different locations
- Can use more than two antennas!
- Each antenna experiences different channels
- If antennas are sufficiently separated, chances are that the signals are mostly uncorrelated
- If one antenna experiences deep fading, chances are that the other antenna has a strong signal
- Antennas should be separated by $1 / 2$ wavelength or more
- Applies to both transmit and receive side
, Channels are symmetric

Receiver Diversity

- Simplest solution
, Selection diversity: pick antenna with best SNR
- But why not use both signals?
+ More information
- Signals out of phase, e.g. kind of like multi-path
? Don't amplify the noise
Maximal ratio combining: combine signals with a weight that is based on their SNR
- Weight will favor the strongest signal (highest SNR)

Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Selection diversity: transmitter picks the best antenna
। i.e. with best channel to receiver
- Sender "precodes" the signal
- How does transmitter learn channel?
- Gets explicit feedback from the receiver
- Rely on channel reciprocity

Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one ... or at least the best transmit antenna
- Receiver
- Use the antenna with the strongest signal
- Always use the same antenna to send the acknowledgement - gives feedback to the sender

Receiver

Typical Algorithm in 802.11

- Use transmit + receive selection diversity
- How to explore all channels to find the best one ... or at least the best transmit antenna
- Sender
- Pick an antenna to transmit and learn about the channel quality based on the ACK
* Occasionally try the other antenna to explore the channel between all four channel pairs

Receiver

Spread Spectrum

- Spread transmission over a wider bandwidth
- Don't put all your eggs in one basket!
- Good for military
- Jamming and interception becomes harder
" Also useful to minimize impact of a "bad" frequency in regular environments
- What can be gained from this apparent waste of spectrum?
- Immunity from various kinds of noise and multipath distortion
- Can be used for hiding and encrypting signals
- Several users can independently use the same higher bandwidth with very little interference

Frequency Hopping Spread Spectrum (FHSS)

- Have the transmitter hop between a seemingly random sequence of frequencies
- Each frequency has the bandwidth of the original signal Dwell time is the time spent using one frequency Spreading code determines the hopping sequence - Must be shared by sender and receiver (e.g. standardized)

Example: Original 802.11 Standard (FH)

- 96 channels of I MHz
- Only 78 used in US
- Other countries used different numbers
- Each channel carried only ~I\% of the bandwidth
- I or 2 Mbps per channel
- Dwell time was configurable
- FCC set an upper bound of 400 msec
- Transmitter/receiver must be synchronized
- Standard defined 26 orthogonal hop sequences
- Transmitter used a beacon on fixed frequency to inform the receiver of its hop sequence
- Can support multiple simultaneous transmissions - use different hop sequences
b e.g. up to 10 co-located APs with their clients

Example: Bluetooth

- 79 frequencies with a spacing of I MHz

Other countries use different numbers of frequencies

- Frequency hopping rate is 1600 hops/s
- Maximum data rate is I MHz

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits (chips) in the transmitted signal
- Spreading code spreads signal across a wider frequency band
- Spread is in direct proportion to number of bits used e.g. exclusive-OR of the bits with the spreading code
- The resulting bit stream is used to modulate the signal

Direct Sequence Spread Spectrum (DSSS)

Properties

- Each bit is sent as multiple chips
, Need more bps bandwidth to send signal
- Number of chips per bit = spreading ratio
- This is the spreading part of spread spectrum
- Need more spectral bandwidth
- Nyquist and Shannon say so!
- Advantages
- Transmission is more resilient.

DSSS signal will look like noise in a narrow band

- Can lose some chips in a word and recover easily
- Multiple users can share bandwidth

Example: Original 802.11 Standard (DSSS)

- DSSS PHY
, I Msymbol/s rate
- II-to-I spreading ratio
b Barker chipping sequence
- Barker sequence has low autocorrelation properties
\square The similarity between observations as a function of the time lag between them
- Uses about 22 MHz
"Receiver decodes by counting the number of "I" bits in each word
- 6 "I" bits correspond to a 0 data bit
- Data rate
- I Mbps (i.e. II Mchips/sec)
- Extended to 2 Mbps
- Requires the detection of a $1 / 4$ phase shift

Example: 802.11b

(Maximum) data rate
, II Mbs

- Complementary Code Keying (CCK)
, Complementary means that the code has good autocorrelation properties
* Want nice properties to ease recovery in the presence of noise, multipath interference, ..
- Each word is mapped onto an 8 bit chip sequence
- Symbol rate at I. $375 \mathrm{MSymbols} / \mathrm{sec}$, at $8 \mathrm{bpS}=1 \mathrm{I} \mathrm{Mbps}$
- Symbol rate
, I. $375 \mathrm{MSymbols} / \mathrm{sec}$, at $8 \mathrm{bpS}=1 \mathrm{I} \mathrm{Mbps}$

Code Division Multiple Access

- Users share spectrum and time, but use different codes to spread their data over frequencies
, DSSS where users use different spreading sequences
- Use spreading sequences that are orthogonal, i.e. they have minimal overlap
- Frequency hopping with different hop sequences
- The idea is that users will only rarely overlap and the inherent robustness of DSSS will allow users to recover if there is a conflict
- Overlap = use the same the frequency at the same time
- The signal of other users will appear as noise

CDMA Principle

- Basic Principles of CDMA
- $D=$ rate of data signal
- Break each bit into k chips - user-specific fixed pattern
- Chip data rate of new channel = kD
- If $\mathrm{k}=6$ and code is a sequence of Is and -Is
- For a 'l' bit,A sends code as chip pattern
- <cl, c2, c3, c4, c5, c6>
- For a ' 0 ' bit, A sends complement of code

। <-cl, -c2, -c3, -c4, -c5, -c6>

- Receiver knows sender's code and performs electronic decode function
$S_{u}(d)=d 1 \times c 1+d 2 \times c 2+d 3 \times c 3+d 4 \times c 4+d 5 \times c 5+d 6 \times c 6$
, <d1, d2, d3, d4, d5, d6> = received chip pattern
- <cl, c2, c3, c4, c5, c6> = sender's code

CDMA Example

- User A code $=$ <I, -I, -I, I,-I, I>
- To send a | bit $=\langle 1,-|,-|,|,-||>$,
- To send a 0 bit $=<-|, I, I,-I, I,-|>$
- User B code $=<\mathrm{I}, \mathrm{I},-\mathrm{I},-\mathrm{I}, \mathrm{I}$, I>
- To send a I bit = <l, I, -I, -I, I, |>
- Receiver receiving with A's code
- (A's code) \times (received chip pattern)
- User A ‘l’ bit: 6 -> I
- User A '0' bit: -6 -> 0
- User B 'I’ bit: 0 -> unwanted signal ignored

Categories of Spreading Sequences

- Spreading Sequence Categories
- Pseudo-noise (PN) sequences
- Orthogonal codes
, For FHSS systems
- PN sequences most common
- For DSSS systems not employing CDMA

PN sequences most common

- For DSSS CDMA systems
- PN sequences
- Orthogonal codes

CDMA Discussion

- CDMA does not assign a fixed bandwidth but a user's bandwidth depends on the load
- More users = more "noise" and less throughput for each user, e.g. more information lost due to errors
- How graceful the degradation is depends on how orthogonal the codes are
- TDMA and FDMA have a fixed channel capacity
- Contention based access is more flexible TDMA
- Weaker signals may be lost in the clutter
- This will systematically put the same node pairs at a disadvantage - not acceptable
- The solution is to add power control, i.e. nearby nodes use a lower transmission power than remote nodes

CDMA Example

- CDMA cellular standard
, Used in the US, e.g. Sprint
- Allocates I. 228 MHz for base station to mobile communication
"Shared by 64 "code channels"
, Used for voice (55), paging service (8), and control (I)
- Provides a lot error coding to recover from errors
- Voice data is 8550 bps
- Coding and FEC increase this to 19.2 kbps Then spread out over I. 228 MHz using DSSS; uses QPSK

Discussion

- Spread spectrum is very widely used
- Effective against noise and multipath
- Signal looks like noise to other nodes
- Multiple transmitters can use the same frequency range
- FCC requires the use of spread spectrum in ISM band
- If signal is above a certain power level
- Is also used in higher speed 802.1I versions.
- No surprise!

Time Redundancy: Bit Stream Level

- Protect digital data by introducing redundancy in the transmitted data
- Error detection codes: can identify certain types of errors
- Error correction codes: can fix certain types of errors
- Block codes provide Forward Error Correction (FEC) for blocks of data
- (n, k) code: n bits are transmitted for k information bits
- Simplest example: parity codes
- Many different codes exist: Hamming, cyclic, Reed-Solomon, ...
, Convolutional codes provide protection for a continuous stream of bits
- Coding gain is n / k
, Turbo codes: convolutional code with channel estimation

Time Diversity Example

- Spread blocks of bytes out over time
- Can use FEC or other error recovery techniques to deal with burst errors

Error Detection/Recovery

- Adds redundant information that checks for errors
- And potentially fix them
- If not, discard packet and resend

Occurs at many levels

- Demodulation of signals into symbols (analog)
, Bit error detection/correction (digital)-our main focus
- Within network adapter (CRC check)

Error Detection/Recovery

- Analog Errors
, Example of signal distortion
- Hamming distance
- Parity and voting
, Hamming codes
- Error bits or error bursts?
- Digital error detection
- Two-dimensional parity
- Cyclic Redundancy Check (CRC)

Analog Errors

- Consider the following encoding of ' Q '

Encoding isn't perfect

© CS/ECE 439 Staff, University of Illinois Fall 2020
I

Encoding isn't perfect

© CS/ECE 439 Staff, University of Illinois Fall 2020
I

Symbols

possible binary voltage encoding
symbol neighborhoods and erasure
region

Symbols

- QAM
- Phase and amplitude modulation
- 2-dimensional representation
, Angle is phase shift
- Radial distance is new amplitude

16-symbol example

Symbols

16-symbol example

possible QAM symbol
neighborhoods in green; all other space results in erasure

Digital error detection and correction

- Input: decoded symbols
- Some correct
- Some incorrect
- Some erased
- Output:
- Correct blocks (or codewords, or frames, or packets)
- Erased blocks

Error Detection Probabilities

- Definitions
> P_{b} : Probability of single bit error (BER)
${ }^{-} P_{1}$: Probability that a frame arrives with no bit errors
${ } P_{2}$:While using error detection, the probability that a frame arrives with one or more undetected errors
- P_{3} :While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors

Error Detection Probabilities

- With no error detection

$$
\begin{aligned}
& P_{1}=\left(1-P_{b}\right)^{F} \\
& P_{2}=1-P_{1} \\
& P_{3}=0
\end{aligned}
$$

- $F=$ Number of bits per frame

Error Detection Process

- Transmitter

- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits
- Receiver
- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch

Parity

- Parity bit appended to a block of data
- Even parity
- Added bit ensures an even number of Is
- Odd parity
- Added bit ensures an odd number of Is
- Example
- 7-bit character
- Even parity
- Odd parity

IIIO00|
III000I 0
III000I I

Parity: Detecting Bit Flips

- I-bit error detection with parity
- Add an extra bit to a code to ensure an even (odd) number of Is
- Every code word has an even (odd) number of Is

© CS/ECE 439 Staff, University of Illinois Fall 2020

Voting: Correcting Bit Flips

- I-bit error correction with voting
- Every codeword is transmitted n times

Codeword is 3 bits long

Voting: 2-bit Erasure Correction

- Every code word is copied 3 times

2-erasure planes in green remaining bit not ambiguous
cannot correct I-error and Ierasure

Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other
, Example:
- 0010 I and 00010
- Hamming distance of 3

Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
- Minimum Hamming Distance for parity
- 2
- Minimum Hamming Distance for voting
- 3

Coverage

- N-bit error detection
- No code word changed into another code word
- Requires Hamming distance of $\mathrm{N}+\mathrm{I}$
- N-bit error correction
- N-bit neighborhood: all codewords within N bit flips
- No overlap between N-bit neighborhoods
- Requires hamming distance of $2 \mathrm{~N}+1$

Hamming Codes

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECCRAM)
- Can detect up to 2-bit errors
- Can correct up to I-bit errors

Hamming Codes

- Construction

number bits from I upward
p powers of 2 are check bits
b all others are data bits

- Check bit j : XOR of all k for which (j AND k) $=\mathrm{j}$
- Example:
- 4 bits of data, 3 check bits

Hamming Codes

- Construction

number bits from I upward
p powers of 2 are check bits
b all others are data bits

- Check bit j : XOR of all k for which (j AND k) $=\mathrm{j}$
- Example:
- 4 bits of data, 3 check bits

Hamming Codes

Construction

number bits from I upward
p powers of 2 are check bits
b all others are data bits

- Check bit j : XOR of all k for which (j AND k) $=\mathrm{j}$
- Example:
- 4 bits of data, 3 check bits

Hamming Codes

© CS/ECE 439 Staff, University of Illinois Fall 2020
I

What are we trying to handle?

- Worst case errors
- We solved this for I bit error
- Can generalize, but will get expensive for more bit errors
- Probability of error per bit
- Flip each bit with some probability, independently of others
- Burst model
- Probability of back-to-back bit errors
- Error probability dependent on adjacent bits
- Value of errors may have structure
- Why assume bursts?
- Appropriate for some media (e.g., radio)
- Faster signaling rate enhances such phenomena

Digital Error Detection Techniques

- Two-dimensional parity
- Detects up to 3-bit errors
- Good for burst errors
- IP checksum
- Simple addition
- Simple in software
- Used as backup to CRC
- Cyclic Redundancy Check (CRC)
- Powerful mathematics
- Tricky in software, simple in hardware
- Used in network adapter

Two-Dimensional Parity

- Use I-dimensional parity

Add one bit to a 7-bit code to ensure an even/odd number of

Parity
Bits

	0101001	
	1101001	0
Data	1011110	
	0001110	
	0110100	1
	1011111	0
Parity Byte	1111011	0

- Add 2nd dimension
- Add an extra byte to frame
- Bits are set to ensure even/odd number of Is in that position across all bytes in frame
- Comments
- Catches all I-, 2- and 3-bit and most 4-bit errors

Two-Dimensional Parity

© CS/ECE 439 Staff, University of Illinois Fall 2020

What happens if...

Can detect exactly which bit flipped Can also correct it!

0	1	1	$\mathbf{1}$	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What about 2-bit errors?

Can detect the two-bit error
Can't detect a problem here

© CS/ECE 439 Staff, University of Illinois Fall 2020
I

What about 2-bit errors?

Could be the dotted pair or the dashed pair.
Can't correct 2-bit error.

If these four parity bits don' Which bits could be in error?	0	1	0	0	0	1	1	1	0
	0	1	1	0	1	1	1	1	
	0	1	1	0	1	1	1	1	0
	0	1	1	0	0	1	0	0	1
	0			0		0		1	1

What about 3-bit errors?

Can detect the three-bit error

© CS/ECE 439 Staff, University of Illinois Fall 2020
I

What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$ $\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$			
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	

What about 4-bit errors?

Can you think of a 4-bit error this scheme can't detect?

© CS/ECE 439 Staff, University of Illinois Fall 2020

Internet Checksum

- Idea
- Add up all the words
- Transmit the sum
, Use I's complement addition on I6bit codewords
- Example
- Codewords:
-5 -3
b I's complement binary:
$1010 \quad 1100$
- I's complement sum

1000

- Comments
- Small number of redundant bits
- Easy to implement
- Not very robust
- Eliminated in IPv6

IP Checksum

```
u_short cksum(u_short *buf, int count) {
    register u_long sum = 0;
    while (count--) {
        sum += *buf++;
        if (sum & 0xFFFF0000) {
        /* carry occurred, so wrap around */
            sum &= 0xFFFF;
            sum++;
        }
    }
    return ~(sum & 0xFFFF);
}
```

What could cause this check to fail?
© CS/ECE 439 Staff, University of Illinois Fall 2020

Simplified CRC-like protocol using regular integers

- Basic idea
- Both endpoints agree in advance on divisor value $C=3$
- Sender wants to send message $M=10$
- Sender computes X such that C divides $I O M+X$
- Sender sends codeword $W=I O M+X$
- Receiver receives W' and checks whether C divides W'
- If so, then probably no error
- If not, then error

Simplified CRC-like protocol using regular integers

- Intuition
- If C is large, it's unlikely that bits are flipped exactly to land on another multiple of C
* CRC is vaguely like this, but uses polynomials instead of numbers

Cyclic Redundancy Check (CRC)

- Given
- Message $M=10011010$
- Represented as Polynomial $M(x)$

$$
\begin{aligned}
& =\left\|* x^{7}+0 * x^{6}+0 * x^{5}+\right\| * x^{4}+\left\|* x^{3}+0 * x^{2}+\right\| * x+0 \\
& =x^{7}+x^{4}+x^{3}+x
\end{aligned}
$$

- Select a divisor polynomial $C(x)$ with degree k
- Example with $k=3$:
- $C(x)=x^{3}+x^{2}+1$
- Represented as IIOI
- Transmit a polynomial $P(x)$ that is evenly divisible by
$C(x)$
$P(x)=M(x) * x^{k}+k$ heck bits How can we determine these k bits?

Properties of Polynomial Arithmetic

- Coefficients are modulo 2

$$
\begin{aligned}
& \left(x^{3}+x\right)+\left(x^{2}+x+1\right)=\ldots \\
& \ldots x^{3}+x^{2}+1 \\
& \left(x^{3}+x\right)-\left(x^{2}+x+1\right)=\ldots \\
& \ldots x^{3}+x^{2}+1 \text { also! }
\end{aligned}
$$

- Addition and subtraction are both xor!
- Need to compute R such that $C(x)$ divides $P(x)=M(x) \bullet x^{k}+$ $R(x)$
- So $R(x)=$ remainder of $M(x) \cdot x^{k} / C(x)$

Will find this with polynomial long division

CRC - Sender

- Given

$M(x)=$	10011010	=	$x^{7}+x^{4}+x^{3}+x$
$C(x)=$	IIOI	=	$x^{3}+x^{2}+$

- Steps
, $T(x)=M(x) * x^{k}$ (add zeros to increase deg. of $M(x)$ by k)
b Find remainder, $R(x)$, from $T(x) / C(x)$
- $P(x)=T(x)-R(x) \Rightarrow M(x)$ followed by $R(x)$
- Example

म $T(x)=10011010000$

- $R(x)=101$
b $P(x)=$ 100|IOIOIOI

CRC - Receiver

- Receive Polynomial $P(x)+E(x)$
- $E(x)$ represents errors
- $E(x)=0$, implies no errors
- Divide $(P(x)+E(x))$ by $C(x)$
- If result $=0$, either
- No errors $(E(x)=0$, and $P(x)$ is evenly divisible by $C(x))$
> $(P(x)+E(x))$ is exactly divisible by $C(x)$, error will not be detected
- If result = I, errors.

CRC - Example Encoding

© CS/ECE 439 Staff, University of Illinois Fall 2020

CRC - Example Decoding - No Errors

CRC - Example Decoding - with Errors

$C(x)=x^{3}+x^{2}+I$	$=1101$	Generator
$P(x)=x^{10}+x^{7}+x^{5}+x^{4}+x^{2}+I$	$=100\|01\| 0101$	Received Message

$m \bmod c$

CRC Error Detection

- Properties

Characterize error as $E(x)$
Error detected unless $C(x)$ divides $E(x)$

* (i.e., $E(x)$ is a multiple of $C(x)$)

Example of Polynomial Multiplication

- Multiply

$$
\begin{aligned}
& \text { IIOI by IOIIO } \\
& x^{3}+x^{2}+1 \text { by } x^{4}+x^{2}+x
\end{aligned}
$$

CRC Error Detection

- What errors can we detect?
- All single-bit errors, if x^{k} and x^{0} have non-zero coefficients
- All double-bit errors, if $C(x)$ has at least three terms
- All odd bit errors, if $C(x)$ contains the factor $(x+1)$
* Any bursts of length $<k$, if $C(x)$ includes a constant term
, Most bursts of length $\geq k$

Common Polynomials for $\mathrm{C}(\mathrm{x})$

CRC	$C(x)$
CRC-8	$x^{8}+x^{2}+x^{1}+1$
CRC-10	$x^{10}+x^{9}+x^{5}+x^{4}+x^{1}+1$
CRC-12	$x^{12}+x^{11}+x^{3}+x^{2}+x^{1}+1$
CRC-16	$x^{16}+x^{15}+x^{2}+1$
CRC-CCITT	$x^{16}+x^{12}+x^{5}+1$
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+$ $x^{4}+x^{2}+x^{1}+1$

Fall 2020

© CS/ECE 439 Staff, University of Illinois

Error Detection vs. Error Correction

- Detection
p Pro: Overhead only on messages with errors
, Con: Cost in bandwidth and latency for retransmissions
- Correction
, Pro: Quick recovery
- Con: Overhead on all messages
- What should we use?
- Correction if retransmission is too expensive
b Correction if probability of errors is high
- Detection when retransmission is easy and probability of errors is low

