
CS/ECE 439: Wireless Networking

Physical Layer - Diversity

© CS/ECE 439 Staff, University of Illinois Fall 2020

Inter-Symbol Interference

 Larger difference in

path length can cause

inter-symbol

interference (ISI)

 Suppose the receiver

can do some

processing

 Add/subtracted scaled

and delayed copies of

the signal

minus:

Time

Fall 2020© CS/ECE 439 Staff, University of Illinois

Dynamic Equalization

 Combine multiple delayed copies of the signal

 ex: linear equalizer circuit

t ttt

Weight
Calculation

Original
Signal

Equalized
Signal

Fall 2020© CS/ECE 439 Staff, University of Illinois

Equalization Discussion

 Use multiple delayed copies of the received signal to try to
reconstruct the original signal

 Weights are set dynamically
 Typically based on some known “training” sequence

 Effectively uses the multiple copies of the signal to reinforce
each other
 But only works for paths that differ in length by less than the

depth of the pipeline

Time

Fall 2020© CS/ECE 439 Staff, University of Illinois

Diversity Techniques
 Spatial diversity

 Exploit fact that fading is location-specific

 Use multiple nearby antennas and combine signals
 Can be directional

 Frequency diversity
 Spread signal over multiple frequencies/broader frequency band

 For example, spread spectrum

 Channel Diversity
 Distribute signal over multiple “channels”

 “Channels” experience independent fading

 Reduces the error, i.e. only part of the signal is affected

 Time diversity
 Spread data out over time

 Expand bit stream into a richer digital signal
 Useful for bursty errors, e.g. slow fading

 A specific form of channel coding

Fall 2020© CS/ECE 439 Staff, University of Illinois

Spatial Diversity

 Use multiple antennas that pick up the signal in
slightly different locations
 Can use more than two antennas!

 Each antenna experiences different channels
 If antennas are sufficiently separated, chances are that

the signals are mostly uncorrelated

 If one antenna experiences deep fading, chances are
that the other antenna has a strong signal
 Antennas should be separated by ½ wavelength or more

 Applies to both transmit and receive side
 Channels are symmetric

Fall 2020© CS/ECE 439 Staff, University of Illinois

Receiver Diversity

 Simplest solution
 Selection diversity: pick antenna with best SNR

 But why not use both signals?
+ More information

- Signals out of phase, e.g. kind of like multi-path

? Don’t amplify the noise

 Maximal ratio combining: combine signals with
a weight that is based on their SNR
 Weight will favor the strongest signal (highest SNR)

Fall 2020© CS/ECE 439 Staff, University of Illinois

Transmit Diversity

 Same as receive diversity but the transmitter

has multiple antennas

 Selection diversity: transmitter picks the best

antenna

 i.e. with best channel to receiver

 Sender “precodes” the signal

 How does transmitter learn channel?

 Gets explicit feedback from the receiver

 Rely on channel reciprocity

Fall 2020© CS/ECE 439 Staff, University of Illinois

Typical Algorithm in 802.11

 Use transmit + receive selection diversity

 How to explore all channels to find the best one
… or at least the best transmit antenna

 Receiver

 Use the antenna with the strongest signal

 Always use the same antenna to send the
acknowledgement – gives feedback to the sender

Transmit Receiver

Fall 2020© CS/ECE 439 Staff, University of Illinois

Typical Algorithm in 802.11

 Use transmit + receive selection diversity

 How to explore all channels to find the best one
… or at least the best transmit antenna

 Sender
 Pick an antenna to transmit and learn about the channel

quality based on the ACK

 Occasionally try the other antenna to explore the
channel between all four channel pairs

Transmit Receiver

Fall 2020© CS/ECE 439 Staff, University of Illinois

Spread Spectrum

 Spread transmission over a wider bandwidth
 Don’t put all your eggs in one basket!

 Good for military
 Jamming and interception becomes harder

 Also useful to minimize impact of a “bad” frequency in
regular environments

 What can be gained from this apparent waste of
spectrum?
 Immunity from various kinds of noise and multipath

distortion

 Can be used for hiding and encrypting signals

 Several users can independently use the same higher
bandwidth with very little interference

Fall 2020© CS/ECE 439 Staff, University of Illinois

Frequency Hopping Spread Spectrum

(FHSS)

 Have the transmitter hop between a seemingly
random sequence of frequencies
 Each frequency has the bandwidth of the original signal

 Dwell time is the time spent using one frequency

 Spreading code determines the hopping sequence
 Must be shared by sender and receiver (e.g.

standardized)

Time

F
re

q
u

e
n

c
y

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Original 802.11 Standard (FH)

 96 channels of 1 MHz
 Only 78 used in US

 Other countries used different numbers

 Each channel carried only ~1% of the bandwidth

 1 or 2 Mbps per channel

 Dwell time was configurable
 FCC set an upper bound of 400 msec

 Transmitter/receiver must be synchronized

 Standard defined 26 orthogonal hop sequences
 Transmitter used a beacon on fixed frequency to inform the

receiver of its hop sequence

 Can support multiple simultaneous transmissions – use
different hop sequences
 e.g. up to 10 co-located APs with their clients

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Bluetooth

 79 frequencies with a spacing of 1 MHz

 Other countries use different numbers of

frequencies

 Frequency hopping rate is 1600 hops/s

 Maximum data rate is 1 MHz

Fall 2020© CS/ECE 439 Staff, University of Illinois

Direct Sequence Spread Spectrum (DSSS)

 Each bit in original signal is represented by multiple bits
(chips) in the transmitted signal

 Spreading code spreads signal across a wider frequency
band
 Spread is in direct proportion to number of bits used

 e.g. exclusive-OR of the bits with the spreading code

 The resulting bit stream is used to modulate the signal

1

0 0 1

1 1 0

0

0 1 1

0 1 1

1

0 0 1

1 1 0

0

1 1 0

1 1 0

0

1 0 1

1 0 1

1

0 1 0

1 0 1

Original Signal

Spreading Code

Transmitted Chips

XOR

Modulated Signal

Fall 2020© CS/ECE 439 Staff, University of Illinois

Direct Sequence Spread Spectrum (DSSS)

Fall 2020© CS/ECE 439 Staff, University of Illinois

Properties

 Each bit is sent as multiple chips
 Need more bps bandwidth to send signal

 Number of chips per bit = spreading ratio
 This is the spreading part of spread spectrum

 Need more spectral bandwidth
 Nyquist and Shannon say so!

 Advantages
 Transmission is more resilient.

 DSSS signal will look like noise in a narrow band

 Can lose some chips in a word and recover easily

 Multiple users can share bandwidth

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Original 802.11 Standard (DSSS)

Fall 2020© CS/ECE 439 Staff, University of Illinois

 DSSS PHY
 1 Msymbol/s rate

 11-to-1 spreading ratio

 Barker chipping sequence
 Barker sequence has low autocorrelation properties

 The similarity between observations as a function of the time lag between them

 Uses about 22 MHz

 Receiver decodes by counting the number of “1” bits in
each word
 6 “1” bits correspond to a 0 data bit

 Data rate
 1 Mbps (i.e. 11 Mchips/sec)

 Extended to 2 Mbps
 Requires the detection of a ¼ phase shift

Example: 802.11b

 (Maximum) data rate
 11 Mbs

 Complementary Code Keying (CCK)
 Complementary means that the code has good auto-

correlation properties
 Want nice properties to ease recovery in the presence of

noise, multipath interference, ..

 Each word is mapped onto an 8 bit chip sequence

 Symbol rate at 1.375 MSymbols/sec, at 8 bpS = 11 Mbps

 Symbol rate
 1.375 MSymbols/sec, at 8 bpS = 11 Mbps

Fall 2020© CS/ECE 439 Staff, University of Illinois

Code Division Multiple Access

 Users share spectrum and time, but use different
codes to spread their data over frequencies
 DSSS where users use different spreading sequences

 Use spreading sequences that are orthogonal, i.e. they
have minimal overlap

 Frequency hopping with different hop sequences

 The idea is that users will only rarely overlap and
the inherent robustness of DSSS will allow users
to recover if there is a conflict
 Overlap = use the same the frequency at the same time

 The signal of other users will appear as noise

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Principle

 Basic Principles of CDMA
 D = rate of data signal

 Break each bit into k chips - user-specific fixed pattern

 Chip data rate of new channel = kD

 If k=6 and code is a sequence of 1s and -1s
 For a ‘1’ bit, A sends code as chip pattern

 <c1, c2, c3, c4, c5, c6>

 For a ‘0’ bit, A sends complement of code
 <-c1, -c2, -c3, -c4, -c5, -c6>

 Receiver knows sender’s code and performs electronic
decode function

 <d1, d2, d3, d4, d5, d6> = received chip pattern

 <c1, c2, c3, c4, c5, c6> = sender’s code

() 665544332211 cdcdcdcdcdcddSu +++++=

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Example

 User A code = <1, –1, –1, 1, –1, 1>
 To send a 1 bit = <1, –1, –1, 1, –1, 1>

 To send a 0 bit = <–1, 1, 1, –1, 1, –1>

 User B code = <1, 1, –1, – 1, 1, 1>
 To send a 1 bit = <1, 1, –1, –1, 1, 1>

 Receiver receiving with A’s code
 (A’s code) x (received chip pattern)

 User A ‘1’ bit: 6 -> 1

 User A ‘0’ bit: -6 -> 0

 User B ‘1’ bit: 0 -> unwanted signal ignored

Fall 2020© CS/ECE 439 Staff, University of Illinois

Categories of Spreading Sequences

 Spreading Sequence Categories
 Pseudo-noise (PN) sequences

 Orthogonal codes

 For FHSS systems
 PN sequences most common

 For DSSS systems not employing CDMA
 PN sequences most common

 For DSSS CDMA systems
 PN sequences

 Orthogonal codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Discussion

 CDMA does not assign a fixed bandwidth but a user’s
bandwidth depends on the load
 More users = more “noise” and less throughput for each

user, e.g. more information lost due to errors

 How graceful the degradation is depends on how
orthogonal the codes are

 TDMA and FDMA have a fixed channel capacity

 Contention based access is more flexible TDMA

 Weaker signals may be lost in the clutter
 This will systematically put the same node pairs at a

disadvantage – not acceptable

 The solution is to add power control, i.e. nearby nodes use a
lower transmission power than remote nodes

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Example

 CDMA cellular standard
 Used in the US, e.g. Sprint

 Allocates 1.228 MHz for base station to mobile
communication
 Shared by 64 “code channels”
 Used for voice (55), paging service (8), and control (1)

 Provides a lot error coding to recover from
errors
 Voice data is 8550 bps

 Coding and FEC increase this to 19.2 kbps
 Then spread out over 1.228 MHz using DSSS; uses

QPSK

Fall 2020© CS/ECE 439 Staff, University of Illinois

Discussion

 Spread spectrum is very widely used

 Effective against noise and multipath
 Signal looks like noise to other nodes

 Multiple transmitters can use the same frequency
range

 FCC requires the use of spread spectrum in
ISM band
 If signal is above a certain power level

 Is also used in higher speed 802.11 versions.
 No surprise!

Fall 2020© CS/ECE 439 Staff, University of Illinois

Time Redundancy: Bit Stream Level

 Protect digital data by introducing redundancy in the
transmitted data
 Error detection codes: can identify certain types of errors

 Error correction codes: can fix certain types of errors

 Block codes provide Forward Error Correction (FEC) for
blocks of data
 (n, k) code: n bits are transmitted for k information bits

 Simplest example: parity codes

 Many different codes exist: Hamming, cyclic, Reed-Solomon, …

 Convolutional codes provide protection for a continuous
stream of bits
 Coding gain is n/k

 Turbo codes: convolutional code with channel estimation

Fall 2020© CS/ECE 439 Staff, University of Illinois

Time Diversity Example

 Spread blocks of bytes out over time

 Can use FEC or other error recovery

techniques to deal with burst errors

A1 A2 A4A3 B1 B2 B4B3 C1 C2 C4C3

A1 A2D1 A3B1 B2 D2 B3C1 C2 D3C3

Fall 2020© CS/ECE 439 Staff, University of Illinois

Error Detection/Recovery

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Adds redundant information that checks for

errors

 And potentially fix them

 If not, discard packet and resend

 Occurs at many levels

 Demodulation of signals into symbols (analog)

 Bit error detection/correction (digital)—our main

focus

 Within network adapter (CRC check)

Error Detection/Recovery

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Analog Errors

 Example of signal distortion

 Hamming distance

 Parity and voting

 Hamming codes

 Error bits or error bursts?

 Digital error detection

 Two-dimensional parity

 Cyclic Redundancy Check (CRC)

Analog Errors

 Consider the following encoding of ‘Q’

Fall 2020© CS/ECE 439 Staff, University of Illinois

-20

-10

0

10

20

V
o

lt
a

g
e

1 1 1 stop0 0 0 0start

Encoding isn’t perfect

Fall 2020© CS/ECE 439 Staff, University of Illinois

-20

-10

0

10

20

V
o

lt
a

g
e

1 1 1 stop0 0 0 0start

Encoding isn’t perfect

Fall 2020© CS/ECE 439 Staff, University of Illinois

1 1 1 stop0 0 0 0start
-30

-20

-10

0

10

20

V
o

lt
a
g

e

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

+15

-15

0
vo

lt
ag

e

1

0

? (erasure)

possible binary voltage encoding

symbol neighborhoods and erasure

region

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

45º

15º

16-symbol example

 QAM

 Phase and amplitude
modulation

 2-dimensional
representation

 Angle is phase shift

 Radial distance is new
amplitude

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

possible QAM symbol

neighborhoods in green; all

other space results in erasure

45º

15º

16-symbol example

Digital error detection and correction

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Input: decoded symbols

 Some correct

 Some incorrect

 Some erased

 Output:

 Correct blocks (or codewords, or frames, or

packets)

 Erased blocks

Error Detection Probabilities

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Definitions
 Pb : Probability of single bit error (BER)

 P1 : Probability that a frame arrives with no bit errors

 P2 : While using error detection, the probability that a

frame arrives with one or more undetected errors

 P3 : While using error detection, the probability that a

frame arrives with one or more detected bit errors but

no undetected bit errors

Error Detection Probabilities

Fall 2020© CS/ECE 439 Staff, University of Illinois

 With no error detection

 F = Number of bits per frame

()

0

1

1

3

12

1

=

−=

−=

P

PP

PP
F

b

Error Detection Process

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Transmitter
 For a given frame, an error-detecting code (check

bits) is calculated from data bits

 Check bits are appended to data bits

 Receiver
 Separates incoming frame into data bits and check

bits

 Calculates check bits from received data bits

 Compares calculated check bits against received
check bits

 Detected error occurs if mismatch

Parity

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Parity bit appended to a block of data

 Even parity

 Added bit ensures an even number of 1s

 Odd parity

 Added bit ensures an odd number of 1s

 Example

 7-bit character 1110001

 Even parity 1110001 0

 Odd parity 1110001 1

Parity: Detecting Bit Flips

Fall 2020© CS/ECE 439 Staff, University of Illinois

 1-bit error detection with parity

 Add an extra bit to a code to ensure an even (odd)

number of 1s

 Every code word has an even (odd) number of 1s

01 11

1000

Valid

code

words

110

000

011

101

010

100

111

001

Parity Encoding:

White – invalid

(error)

Voting: Correcting Bit Flips

Fall 2020© CS/ECE 439 Staff, University of Illinois

 1-bit error correction with voting

 Every codeword is transmitted n times

 Codeword is 3 bits long

000

111

Voting:

White – correct to 1

Blue - correct to 0

110

011

101

010

100

001

0 1

Valid

code

words

Voting: 2-bit Erasure Correction

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Every code word is copied 3 times

2-erasure planes in green

remaining bit not ambiguous

cannot correct 1-error and 1-

erasure

0??

?0?

010 110

100000

011 111

101001

??0

Hamming Distance

Fall 2020© CS/ECE 439 Staff, University of Illinois

 The Hamming distance between two code

words is the minimum number of bit flips to

move from one to the other

 Example:

 00101 and 00010

 Hamming distance of 3

Minimum Hamming Distance

Fall 2020© CS/ECE 439 Staff, University of Illinois

 The minimum Hamming distance of a code is

the minimum distance over all pairs of

codewords

 Minimum Hamming Distance for parity

 2

 Minimum Hamming Distance for voting

 3

Coverage

Fall 2020© CS/ECE 439 Staff, University of Illinois

 N-bit error detection

 No code word changed into another code word

 Requires Hamming distance of N+1

 N-bit error correction

 N-bit neighborhood: all codewords within N bit

flips

 No overlap between N-bit neighborhoods

 Requires hamming distance of 2N+1

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Linear error-correcting code

 Named after Richard Hamming

 Simple, commonly used in RAM (e.g., ECC-

RAM)

 Can detect up to 2-bit errors

 Can correct up to 1-bit errors

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

D3

D5

C1

D6

C2

C4

D7

What are we trying to handle?

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Worst case errors
 We solved this for 1 bit error

 Can generalize, but will get expensive for more bit errors

 Probability of error per bit
 Flip each bit with some probability, independently of others

 Burst model
 Probability of back-to-back bit errors

 Error probability dependent on adjacent bits

 Value of errors may have structure

 Why assume bursts?
 Appropriate for some media (e.g., radio)

 Faster signaling rate enhances such phenomena

Fall 2020© CS/ECE 439 Staff, University of Illinois

Digital Error Detection Techniques

 Two-dimensional parity
 Detects up to 3-bit errors

 Good for burst errors

 IP checksum
 Simple addition

 Simple in software

 Used as backup to CRC

 Cyclic Redundancy Check (CRC)
 Powerful mathematics

 Tricky in software, simple in hardware

 Used in network adapter

Two-Dimensional Parity

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Use 1-dimensional parity
 Add one bit to a 7-bit code to

ensure an even/odd number of
1s

 Add 2nd dimension
 Add an extra byte to frame

 Bits are set to ensure even/odd
number of 1s in that position
across all bytes in frame

 Comments
 Catches all 1-, 2- and 3-bit and

most 4-bit errors

1

0

1

1

1

0

1111011 0

Parity

Bits

Parity

Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data

Fall 2020© CS/ECE 439 Staff, University of Illinois

Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

What happens if…

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped

Can also correct it!

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the two-bit error

0

Can’t detect a problem here

Can’t tell

which bits

are flipped,

so can’t

correct

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

If these

four parity

bits don’t

match

Which bits

could be in

error?

Could be the dotted pair or the dashed pair.

Can’t correct 2-bit error.

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the three-bit error

0 0

But you

can’t
correct (eg

if dashed

bits got

flipped

instead of

the dotted

ones)

What about 4-bit errors?

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Are there any 4-bit errors this scheme *can* detect?

What about 4-bit errors?

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

1

1

0

Can you think of a 4-bit error this scheme can’t detect?

Internet Checksum

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Idea
 Add up all the words

 Transmit the sum

 Use 1’s complement addition on 16bit codewords

 Example
 Codewords: -5 -3

 1’s complement binary: 1010 1100

 1’s complement sum 1000

 Comments
 Small number of redundant bits

 Easy to implement

 Not very robust

 Eliminated in IPv6

Fall 2020© CS/ECE 439 Staff, University of Illinois

IP Checksum
u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}

What could cause this check to fail?

Simplified CRC-like protocol

using regular integers

 Basic idea

 Both endpoints agree in advance on divisor value C = 3

 Sender wants to send message M = 10

 Sender computes X such that C divides 10M + X

 Sender sends codeword W = 10M + X

 Receiver receives W’ and checks whether C divides W’

 If so, then probably no error

 If not, then error

Fall 2020© CS/ECE 439 Staff, University of Illinois

Simplified CRC-like protocol

using regular integers

 Intuition

 If C is large, it’s unlikely that bits are flipped exactly to land

on another multiple of C

 CRC is vaguely like this, but uses polynomials instead of

numbers

Fall 2020© CS/ECE 439 Staff, University of Illinois

Fall 2020© CS/ECE 439 Staff, University of Illinois

Cyclic Redundancy Check (CRC)

 Given
 Message M = 10011010

 Represented as Polynomial M(x)
= 1 x7 + 0 x6 + 0 x5 + 1 x4 + 1 x3 + 0 x2 + 1 x + 0

= x7 + x4 + x3 + x

 Select a divisor polynomial C(x) with degree k

 Example with k = 3:
 C(x) = x3 + x2 + 1

 Represented as 1101

 Transmit a polynomial P(x) that is evenly divisible by

C(x)

 P(x) = M(x) xk + k check bits How can we determine

these k bits?

Fall 2020© CS/ECE 439 Staff, University of Illinois

Properties of Polynomial Arithmetic

 Coefficients are modulo 2

(x3 + x) + (x2 + x + 1) = …

…x3 + x2 + 1

(x3 + x) – (x2 + x + 1) = …

…x3 + x2 + 1 also!

 Addition and subtraction are both xor!

 Need to compute R such that C(x) divides P(x) = M(x)•xk +

R(x)

 So R(x) = remainder of M(x)•xk / C(x)

 Will find this with polynomial long division

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC - Sender

 Given

 M(x) = 10011010 = x7 + x4 + x3 + x

 C(x) = 1101 = x3 + x2 + 1

 Steps
 T(x) = M(x) xk (add zeros to increase deg. of M(x) by k)

 Find remainder, R(x), from T(x)/C(x)

 P(x) = T(x) – R(x) M(x) followed by R(x)

 Example
 T(x) = 10011010000

 R(x) = 101

 P(x) = 10011010101

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC - Receiver

 Receive Polynomial P(x) + E(x)

 E(x) represents errors

 E(x) = 0, implies no errors

 Divide (P(x) + E(x)) by C(x)

 If result = 0, either

 No errors (E(x) = 0, and P(x) is evenly divisible by C(x))

 (P(x) + E(x)) is exactly divisible by C(x), error will not be
detected

 If result = 1, errors.

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k

zeros

Result:

Transmit message

followed by

remainder:

10011010101

C(x) = x3 + x2 + 1 = 1101 Generator

M(x) = x7 + x4 + x3 + x = 10011010 Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Decoding – No Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

0

1101Remainder

m mod c

10011010101 Received

message, no

errors

Result:

CRC test is passed

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x6 + x4 + x2 + 1 = 10011010101 Received Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Decoding – with Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

0101

1101

Remainder

m mod c

10010110101 Received

message

Result:

CRC test failed

Two bit errors

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x5 + x4 + x2 + 1 = 10010110101 Received Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC Error Detection

 Properties

 Characterize error as E(x)

 Error detected unless C(x) divides E(x)

 (i.e., E(x) is a multiple of C(x))

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example of Polynomial Multiplication

 Multiply

 1101 by 10110

 x3 + x2 + 1 by x4 + x2 + x

1011
10110

1101
1101

1101

00011111110

This is a multiple of c, so

that if errors occur

according to this

sequence, the CRC test

would be passed

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC Error Detection

 What errors can we detect?
 All single-bit errors, if xk and x0 have non-zero coefficients

 All double-bit errors, if C(x) has at least three terms

 All odd bit errors, if C(x) contains the factor (x + 1)

 Any bursts of length < k, if C(x) includes a constant term

 Most bursts of length k

Fall 2020 © CS/ECE 439 Staff, University of

Illinois

Common Polynomials for C(x)

CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +

x4 + x2 + x1 + 1

Fall 2020© CS/ECE 439 Staff, University of Illinois

Error Detection vs. Error Correction

 Detection
 Pro: Overhead only on messages with errors

 Con: Cost in bandwidth and latency for retransmissions

 Correction
 Pro: Quick recovery

 Con: Overhead on all messages

 What should we use?
 Correction if retransmission is too expensive

 Correction if probability of errors is high

 Detection when retransmission is easy and probability of
errors is low

