
CS/ECE 439: Wireless Networking

Physical Layer - Diversity

© CS/ECE 439 Staff, University of Illinois Fall 2020

Inter-Symbol Interference

 Larger difference in

path length can cause

inter-symbol

interference (ISI)

 Suppose the receiver

can do some

processing

 Add/subtracted scaled

and delayed copies of

the signal

minus:

Time

Fall 2020© CS/ECE 439 Staff, University of Illinois

Dynamic Equalization

 Combine multiple delayed copies of the signal

 ex: linear equalizer circuit

t ttt

Weight
Calculation

Original
Signal

Equalized
Signal

Fall 2020© CS/ECE 439 Staff, University of Illinois

Equalization Discussion

 Use multiple delayed copies of the received signal to try to
reconstruct the original signal

 Weights are set dynamically
 Typically based on some known “training” sequence

 Effectively uses the multiple copies of the signal to reinforce
each other
 But only works for paths that differ in length by less than the

depth of the pipeline

Time

Fall 2020© CS/ECE 439 Staff, University of Illinois

Diversity Techniques
 Spatial diversity

 Exploit fact that fading is location-specific

 Use multiple nearby antennas and combine signals
 Can be directional

 Frequency diversity
 Spread signal over multiple frequencies/broader frequency band

 For example, spread spectrum

 Channel Diversity
 Distribute signal over multiple “channels”

 “Channels” experience independent fading

 Reduces the error, i.e. only part of the signal is affected

 Time diversity
 Spread data out over time

 Expand bit stream into a richer digital signal
 Useful for bursty errors, e.g. slow fading

 A specific form of channel coding

Fall 2020© CS/ECE 439 Staff, University of Illinois

Spatial Diversity

 Use multiple antennas that pick up the signal in
slightly different locations
 Can use more than two antennas!

 Each antenna experiences different channels
 If antennas are sufficiently separated, chances are that

the signals are mostly uncorrelated

 If one antenna experiences deep fading, chances are
that the other antenna has a strong signal
 Antennas should be separated by ½ wavelength or more

 Applies to both transmit and receive side
 Channels are symmetric

Fall 2020© CS/ECE 439 Staff, University of Illinois

Receiver Diversity

 Simplest solution
 Selection diversity: pick antenna with best SNR

 But why not use both signals?
+ More information

- Signals out of phase, e.g. kind of like multi-path

? Don’t amplify the noise

 Maximal ratio combining: combine signals with
a weight that is based on their SNR
 Weight will favor the strongest signal (highest SNR)

Fall 2020© CS/ECE 439 Staff, University of Illinois

Transmit Diversity

 Same as receive diversity but the transmitter

has multiple antennas

 Selection diversity: transmitter picks the best

antenna

 i.e. with best channel to receiver

 Sender “precodes” the signal

 How does transmitter learn channel?

 Gets explicit feedback from the receiver

 Rely on channel reciprocity

Fall 2020© CS/ECE 439 Staff, University of Illinois

Typical Algorithm in 802.11

 Use transmit + receive selection diversity

 How to explore all channels to find the best one
… or at least the best transmit antenna

 Receiver

 Use the antenna with the strongest signal

 Always use the same antenna to send the
acknowledgement – gives feedback to the sender

Transmit Receiver

Fall 2020© CS/ECE 439 Staff, University of Illinois

Typical Algorithm in 802.11

 Use transmit + receive selection diversity

 How to explore all channels to find the best one
… or at least the best transmit antenna

 Sender
 Pick an antenna to transmit and learn about the channel

quality based on the ACK

 Occasionally try the other antenna to explore the
channel between all four channel pairs

Transmit Receiver

Fall 2020© CS/ECE 439 Staff, University of Illinois

Spread Spectrum

 Spread transmission over a wider bandwidth
 Don’t put all your eggs in one basket!

 Good for military
 Jamming and interception becomes harder

 Also useful to minimize impact of a “bad” frequency in
regular environments

 What can be gained from this apparent waste of
spectrum?
 Immunity from various kinds of noise and multipath

distortion

 Can be used for hiding and encrypting signals

 Several users can independently use the same higher
bandwidth with very little interference

Fall 2020© CS/ECE 439 Staff, University of Illinois

Frequency Hopping Spread Spectrum

(FHSS)

 Have the transmitter hop between a seemingly
random sequence of frequencies
 Each frequency has the bandwidth of the original signal

 Dwell time is the time spent using one frequency

 Spreading code determines the hopping sequence
 Must be shared by sender and receiver (e.g.

standardized)

Time

F
re

q
u

e
n

c
y

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Original 802.11 Standard (FH)

 96 channels of 1 MHz
 Only 78 used in US

 Other countries used different numbers

 Each channel carried only ~1% of the bandwidth

 1 or 2 Mbps per channel

 Dwell time was configurable
 FCC set an upper bound of 400 msec

 Transmitter/receiver must be synchronized

 Standard defined 26 orthogonal hop sequences
 Transmitter used a beacon on fixed frequency to inform the

receiver of its hop sequence

 Can support multiple simultaneous transmissions – use
different hop sequences
 e.g. up to 10 co-located APs with their clients

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Bluetooth

 79 frequencies with a spacing of 1 MHz

 Other countries use different numbers of

frequencies

 Frequency hopping rate is 1600 hops/s

 Maximum data rate is 1 MHz

Fall 2020© CS/ECE 439 Staff, University of Illinois

Direct Sequence Spread Spectrum (DSSS)

 Each bit in original signal is represented by multiple bits
(chips) in the transmitted signal

 Spreading code spreads signal across a wider frequency
band
 Spread is in direct proportion to number of bits used

 e.g. exclusive-OR of the bits with the spreading code

 The resulting bit stream is used to modulate the signal

1

0 0 1

1 1 0

0

0 1 1

0 1 1

1

0 0 1

1 1 0

0

1 1 0

1 1 0

0

1 0 1

1 0 1

1

0 1 0

1 0 1

Original Signal

Spreading Code

Transmitted Chips

XOR

Modulated Signal

Fall 2020© CS/ECE 439 Staff, University of Illinois

Direct Sequence Spread Spectrum (DSSS)

Fall 2020© CS/ECE 439 Staff, University of Illinois

Properties

 Each bit is sent as multiple chips
 Need more bps bandwidth to send signal

 Number of chips per bit = spreading ratio
 This is the spreading part of spread spectrum

 Need more spectral bandwidth
 Nyquist and Shannon say so!

 Advantages
 Transmission is more resilient.

 DSSS signal will look like noise in a narrow band

 Can lose some chips in a word and recover easily

 Multiple users can share bandwidth

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example: Original 802.11 Standard (DSSS)

Fall 2020© CS/ECE 439 Staff, University of Illinois

 DSSS PHY
 1 Msymbol/s rate

 11-to-1 spreading ratio

 Barker chipping sequence
 Barker sequence has low autocorrelation properties

 The similarity between observations as a function of the time lag between them

 Uses about 22 MHz

 Receiver decodes by counting the number of “1” bits in
each word
 6 “1” bits correspond to a 0 data bit

 Data rate
 1 Mbps (i.e. 11 Mchips/sec)

 Extended to 2 Mbps
 Requires the detection of a ¼ phase shift

Example: 802.11b

 (Maximum) data rate
 11 Mbs

 Complementary Code Keying (CCK)
 Complementary means that the code has good auto-

correlation properties
 Want nice properties to ease recovery in the presence of

noise, multipath interference, ..

 Each word is mapped onto an 8 bit chip sequence

 Symbol rate at 1.375 MSymbols/sec, at 8 bpS = 11 Mbps

 Symbol rate
 1.375 MSymbols/sec, at 8 bpS = 11 Mbps

Fall 2020© CS/ECE 439 Staff, University of Illinois

Code Division Multiple Access

 Users share spectrum and time, but use different
codes to spread their data over frequencies
 DSSS where users use different spreading sequences

 Use spreading sequences that are orthogonal, i.e. they
have minimal overlap

 Frequency hopping with different hop sequences

 The idea is that users will only rarely overlap and
the inherent robustness of DSSS will allow users
to recover if there is a conflict
 Overlap = use the same the frequency at the same time

 The signal of other users will appear as noise

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Principle

 Basic Principles of CDMA
 D = rate of data signal

 Break each bit into k chips - user-specific fixed pattern

 Chip data rate of new channel = kD

 If k=6 and code is a sequence of 1s and -1s
 For a ‘1’ bit, A sends code as chip pattern

 <c1, c2, c3, c4, c5, c6>

 For a ‘0’ bit, A sends complement of code
 <-c1, -c2, -c3, -c4, -c5, -c6>

 Receiver knows sender’s code and performs electronic
decode function

 <d1, d2, d3, d4, d5, d6> = received chip pattern

 <c1, c2, c3, c4, c5, c6> = sender’s code

() 665544332211 cdcdcdcdcdcddSu +++++=

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Example

 User A code = <1, –1, –1, 1, –1, 1>
 To send a 1 bit = <1, –1, –1, 1, –1, 1>

 To send a 0 bit = <–1, 1, 1, –1, 1, –1>

 User B code = <1, 1, –1, – 1, 1, 1>
 To send a 1 bit = <1, 1, –1, –1, 1, 1>

 Receiver receiving with A’s code
 (A’s code) x (received chip pattern)

 User A ‘1’ bit: 6 -> 1

 User A ‘0’ bit: -6 -> 0

 User B ‘1’ bit: 0 -> unwanted signal ignored

Fall 2020© CS/ECE 439 Staff, University of Illinois

Categories of Spreading Sequences

 Spreading Sequence Categories
 Pseudo-noise (PN) sequences

 Orthogonal codes

 For FHSS systems
 PN sequences most common

 For DSSS systems not employing CDMA
 PN sequences most common

 For DSSS CDMA systems
 PN sequences

 Orthogonal codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Discussion

 CDMA does not assign a fixed bandwidth but a user’s
bandwidth depends on the load
 More users = more “noise” and less throughput for each

user, e.g. more information lost due to errors

 How graceful the degradation is depends on how
orthogonal the codes are

 TDMA and FDMA have a fixed channel capacity

 Contention based access is more flexible TDMA

 Weaker signals may be lost in the clutter
 This will systematically put the same node pairs at a

disadvantage – not acceptable

 The solution is to add power control, i.e. nearby nodes use a
lower transmission power than remote nodes

Fall 2020© CS/ECE 439 Staff, University of Illinois

CDMA Example

 CDMA cellular standard
 Used in the US, e.g. Sprint

 Allocates 1.228 MHz for base station to mobile
communication
 Shared by 64 “code channels”
 Used for voice (55), paging service (8), and control (1)

 Provides a lot error coding to recover from
errors
 Voice data is 8550 bps

 Coding and FEC increase this to 19.2 kbps
 Then spread out over 1.228 MHz using DSSS; uses

QPSK

Fall 2020© CS/ECE 439 Staff, University of Illinois

Discussion

 Spread spectrum is very widely used

 Effective against noise and multipath
 Signal looks like noise to other nodes

 Multiple transmitters can use the same frequency
range

 FCC requires the use of spread spectrum in
ISM band
 If signal is above a certain power level

 Is also used in higher speed 802.11 versions.
 No surprise!

Fall 2020© CS/ECE 439 Staff, University of Illinois

Time Redundancy: Bit Stream Level

 Protect digital data by introducing redundancy in the
transmitted data
 Error detection codes: can identify certain types of errors

 Error correction codes: can fix certain types of errors

 Block codes provide Forward Error Correction (FEC) for
blocks of data
 (n, k) code: n bits are transmitted for k information bits

 Simplest example: parity codes

 Many different codes exist: Hamming, cyclic, Reed-Solomon, …

 Convolutional codes provide protection for a continuous
stream of bits
 Coding gain is n/k

 Turbo codes: convolutional code with channel estimation

Fall 2020© CS/ECE 439 Staff, University of Illinois

Time Diversity Example

 Spread blocks of bytes out over time

 Can use FEC or other error recovery

techniques to deal with burst errors

A1 A2 A4A3 B1 B2 B4B3 C1 C2 C4C3

A1 A2D1 A3B1 B2 D2 B3C1 C2 D3C3

Fall 2020© CS/ECE 439 Staff, University of Illinois

Error Detection/Recovery

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Adds redundant information that checks for

errors

 And potentially fix them

 If not, discard packet and resend

 Occurs at many levels

 Demodulation of signals into symbols (analog)

 Bit error detection/correction (digital)—our main

focus

 Within network adapter (CRC check)

Error Detection/Recovery

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Analog Errors

 Example of signal distortion

 Hamming distance

 Parity and voting

 Hamming codes

 Error bits or error bursts?

 Digital error detection

 Two-dimensional parity

 Cyclic Redundancy Check (CRC)

Analog Errors

 Consider the following encoding of ‘Q’

Fall 2020© CS/ECE 439 Staff, University of Illinois

-20

-10

0

10

20

V
o

lt
a

g
e

1 1 1 stop0 0 0 0start

Encoding isn’t perfect

Fall 2020© CS/ECE 439 Staff, University of Illinois

-20

-10

0

10

20

V
o

lt
a

g
e

1 1 1 stop0 0 0 0start

Encoding isn’t perfect

Fall 2020© CS/ECE 439 Staff, University of Illinois

1 1 1 stop0 0 0 0start
-30

-20

-10

0

10

20

V
o

lt
a
g

e

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

+15

-15

0
vo

lt
ag

e

1

0

? (erasure)

possible binary voltage encoding

symbol neighborhoods and erasure

region

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

45º

15º

16-symbol example

 QAM

 Phase and amplitude
modulation

 2-dimensional
representation

 Angle is phase shift

 Radial distance is new
amplitude

Fall 2020© CS/ECE 439 Staff, University of Illinois

Symbols

possible QAM symbol

neighborhoods in green; all

other space results in erasure

45º

15º

16-symbol example

Digital error detection and correction

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Input: decoded symbols

 Some correct

 Some incorrect

 Some erased

 Output:

 Correct blocks (or codewords, or frames, or

packets)

 Erased blocks

Error Detection Probabilities

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Definitions
 Pb : Probability of single bit error (BER)

 P1 : Probability that a frame arrives with no bit errors

 P2 : While using error detection, the probability that a

frame arrives with one or more undetected errors

 P3 : While using error detection, the probability that a

frame arrives with one or more detected bit errors but

no undetected bit errors

Error Detection Probabilities

Fall 2020© CS/ECE 439 Staff, University of Illinois

 With no error detection

 F = Number of bits per frame

()

0

1

1

3

12

1

=

−=

−=

P

PP

PP
F

b

Error Detection Process

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Transmitter
 For a given frame, an error-detecting code (check

bits) is calculated from data bits

 Check bits are appended to data bits

 Receiver
 Separates incoming frame into data bits and check

bits

 Calculates check bits from received data bits

 Compares calculated check bits against received
check bits

 Detected error occurs if mismatch

Parity

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Parity bit appended to a block of data

 Even parity

 Added bit ensures an even number of 1s

 Odd parity

 Added bit ensures an odd number of 1s

 Example

 7-bit character 1110001

 Even parity 1110001 0

 Odd parity 1110001 1

Parity: Detecting Bit Flips

Fall 2020© CS/ECE 439 Staff, University of Illinois

 1-bit error detection with parity

 Add an extra bit to a code to ensure an even (odd)

number of 1s

 Every code word has an even (odd) number of 1s

01 11

1000

Valid

code

words

110

000

011

101

010

100

111

001

Parity Encoding:

White – invalid

(error)

Voting: Correcting Bit Flips

Fall 2020© CS/ECE 439 Staff, University of Illinois

 1-bit error correction with voting

 Every codeword is transmitted n times

 Codeword is 3 bits long

000

111

Voting:

White – correct to 1

Blue - correct to 0

110

011

101

010

100

001

0 1

Valid

code

words

Voting: 2-bit Erasure Correction

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Every code word is copied 3 times

2-erasure planes in green

remaining bit not ambiguous

cannot correct 1-error and 1-

erasure

0??

?0?

010 110

100000

011 111

101001

??0

Hamming Distance

Fall 2020© CS/ECE 439 Staff, University of Illinois

 The Hamming distance between two code

words is the minimum number of bit flips to

move from one to the other

 Example:

 00101 and 00010

 Hamming distance of 3

Minimum Hamming Distance

Fall 2020© CS/ECE 439 Staff, University of Illinois

 The minimum Hamming distance of a code is

the minimum distance over all pairs of

codewords

 Minimum Hamming Distance for parity

 2

 Minimum Hamming Distance for voting

 3

Coverage

Fall 2020© CS/ECE 439 Staff, University of Illinois

 N-bit error detection

 No code word changed into another code word

 Requires Hamming distance of N+1

 N-bit error correction

 N-bit neighborhood: all codewords within N bit

flips

 No overlap between N-bit neighborhoods

 Requires hamming distance of 2N+1

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Linear error-correcting code

 Named after Richard Hamming

 Simple, commonly used in RAM (e.g., ECC-

RAM)

 Can detect up to 2-bit errors

 Can correct up to 1-bit errors

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example:
 4 bits of data, 3

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

Hamming Codes

Fall 2020© CS/ECE 439 Staff, University of Illinois

D3

D5

C1

D6

C2

C4

D7

What are we trying to handle?

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Worst case errors
 We solved this for 1 bit error

 Can generalize, but will get expensive for more bit errors

 Probability of error per bit
 Flip each bit with some probability, independently of others

 Burst model
 Probability of back-to-back bit errors

 Error probability dependent on adjacent bits

 Value of errors may have structure

 Why assume bursts?
 Appropriate for some media (e.g., radio)

 Faster signaling rate enhances such phenomena

Fall 2020© CS/ECE 439 Staff, University of Illinois

Digital Error Detection Techniques

 Two-dimensional parity
 Detects up to 3-bit errors

 Good for burst errors

 IP checksum
 Simple addition

 Simple in software

 Used as backup to CRC

 Cyclic Redundancy Check (CRC)
 Powerful mathematics

 Tricky in software, simple in hardware

 Used in network adapter

Two-Dimensional Parity

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Use 1-dimensional parity
 Add one bit to a 7-bit code to

ensure an even/odd number of
1s

 Add 2nd dimension
 Add an extra byte to frame

 Bits are set to ensure even/odd
number of 1s in that position
across all bytes in frame

 Comments
 Catches all 1-, 2- and 3-bit and

most 4-bit errors

1

0

1

1

1

0

1111011 0

Parity

Bits

Parity

Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data

Fall 2020© CS/ECE 439 Staff, University of Illinois

Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

What happens if…

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped

Can also correct it!

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the two-bit error

0

Can’t detect a problem here

Can’t tell

which bits

are flipped,

so can’t

correct

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

If these

four parity

bits don’t

match

Which bits

could be in

error?

Could be the dotted pair or the dashed pair.

Can’t correct 2-bit error.

Fall 2020© CS/ECE 439 Staff, University of Illinois

What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the three-bit error

0 0

But you

can’t
correct (eg

if dashed

bits got

flipped

instead of

the dotted

ones)

What about 4-bit errors?

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Are there any 4-bit errors this scheme *can* detect?

What about 4-bit errors?

Fall 2020© CS/ECE 439 Staff, University of Illinois

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

1

1

0

Can you think of a 4-bit error this scheme can’t detect?

Internet Checksum

Fall 2020© CS/ECE 439 Staff, University of Illinois

 Idea
 Add up all the words

 Transmit the sum

 Use 1’s complement addition on 16bit codewords

 Example
 Codewords: -5 -3

 1’s complement binary: 1010 1100

 1’s complement sum 1000

 Comments
 Small number of redundant bits

 Easy to implement

 Not very robust

 Eliminated in IPv6

Fall 2020© CS/ECE 439 Staff, University of Illinois

IP Checksum
u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}

What could cause this check to fail?

Simplified CRC-like protocol

using regular integers

 Basic idea

 Both endpoints agree in advance on divisor value C = 3

 Sender wants to send message M = 10

 Sender computes X such that C divides 10M + X

 Sender sends codeword W = 10M + X

 Receiver receives W’ and checks whether C divides W’

 If so, then probably no error

 If not, then error

Fall 2020© CS/ECE 439 Staff, University of Illinois

Simplified CRC-like protocol

using regular integers

 Intuition

 If C is large, it’s unlikely that bits are flipped exactly to land

on another multiple of C

 CRC is vaguely like this, but uses polynomials instead of

numbers

Fall 2020© CS/ECE 439 Staff, University of Illinois

Fall 2020© CS/ECE 439 Staff, University of Illinois

Cyclic Redundancy Check (CRC)

 Given
 Message M = 10011010

 Represented as Polynomial M(x)
= 1 x7 + 0 x6 + 0 x5 + 1 x4 + 1 x3 + 0 x2 + 1 x + 0

= x7 + x4 + x3 + x

 Select a divisor polynomial C(x) with degree k

 Example with k = 3:
 C(x) = x3 + x2 + 1

 Represented as 1101

 Transmit a polynomial P(x) that is evenly divisible by

C(x)

 P(x) = M(x) xk + k check bits How can we determine

these k bits?

Fall 2020© CS/ECE 439 Staff, University of Illinois

Properties of Polynomial Arithmetic

 Coefficients are modulo 2

(x3 + x) + (x2 + x + 1) = …

…x3 + x2 + 1

(x3 + x) – (x2 + x + 1) = …

…x3 + x2 + 1 also!

 Addition and subtraction are both xor!

 Need to compute R such that C(x) divides P(x) = M(x)•xk +

R(x)

 So R(x) = remainder of M(x)•xk / C(x)

 Will find this with polynomial long division

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC - Sender

 Given

 M(x) = 10011010 = x7 + x4 + x3 + x

 C(x) = 1101 = x3 + x2 + 1

 Steps
 T(x) = M(x)  xk (add zeros to increase deg. of M(x) by k)

 Find remainder, R(x), from T(x)/C(x)

 P(x) = T(x) – R(x)  M(x) followed by R(x)

 Example
 T(x) = 10011010000

 R(x) = 101

 P(x) = 10011010101

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC - Receiver

 Receive Polynomial P(x) + E(x)

 E(x) represents errors

 E(x) = 0, implies no errors

 Divide (P(x) + E(x)) by C(x)

 If result = 0, either

 No errors (E(x) = 0, and P(x) is evenly divisible by C(x))

 (P(x) + E(x)) is exactly divisible by C(x), error will not be
detected

 If result = 1, errors.

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k

zeros

Result:

Transmit message

followed by

remainder:

10011010101

C(x) = x3 + x2 + 1 = 1101 Generator

M(x) = x7 + x4 + x3 + x = 10011010 Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Decoding – No Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

0

1101Remainder

m mod c

10011010101 Received

message, no

errors

Result:

CRC test is passed

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x6 + x4 + x2 + 1 = 10011010101 Received Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC – Example Decoding – with Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check

sequence c,

equivalent to a

degree-k

polynomial

0101

1101

Remainder

m mod c

10010110101 Received

message

Result:

CRC test failed

Two bit errors

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x5 + x4 + x2 + 1 = 10010110101 Received Message

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC Error Detection

 Properties

 Characterize error as E(x)

 Error detected unless C(x) divides E(x)

 (i.e., E(x) is a multiple of C(x))

Fall 2020© CS/ECE 439 Staff, University of Illinois

Example of Polynomial Multiplication

 Multiply

 1101 by 10110

 x3 + x2 + 1 by x4 + x2 + x

1011
10110

1101
1101

1101

00011111110

This is a multiple of c, so

that if errors occur

according to this

sequence, the CRC test

would be passed

Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC Error Detection

 What errors can we detect?
 All single-bit errors, if xk and x0 have non-zero coefficients

 All double-bit errors, if C(x) has at least three terms

 All odd bit errors, if C(x) contains the factor (x + 1)

 Any bursts of length < k, if C(x) includes a constant term

 Most bursts of length  k

Fall 2020 © CS/ECE 439 Staff, University of

Illinois

Common Polynomials for C(x)

CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +

x4 + x2 + x1 + 1

Fall 2020© CS/ECE 439 Staff, University of Illinois

Error Detection vs. Error Correction

 Detection
 Pro: Overhead only on messages with errors

 Con: Cost in bandwidth and latency for retransmissions

 Correction
 Pro: Quick recovery

 Con: Overhead on all messages

 What should we use?
 Correction if retransmission is too expensive

 Correction if probability of errors is high

 Detection when retransmission is easy and probability of
errors is low

