
CS/ECE 439: Wireless Networking

Physical Layer - Diversity

© CS/ECE 439 Staff, University of Illinois Fall 2020



Inter-Symbol Interference

 Larger difference in 

path length can cause 

inter-symbol 

interference (ISI)

 Suppose the receiver 

can do some 

processing

 Add/subtracted scaled 

and delayed copies of 

the signal

minus:

Time
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Dynamic Equalization

 Combine multiple delayed copies of the signal

 ex: linear equalizer circuit

t ttt

Weight
Calculation

Original
Signal

Equalized
Signal

Fall 2020© CS/ECE 439 Staff, University of Illinois



Equalization Discussion

 Use multiple delayed copies of the received signal to try to 
reconstruct the original signal

 Weights are set dynamically
 Typically based on some known “training” sequence

 Effectively uses the multiple copies of the signal to reinforce 
each other 
 But only works for paths that differ in length by less than the 

depth of the pipeline

Time
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Diversity Techniques
 Spatial diversity

 Exploit fact that fading is location-specific

 Use multiple nearby antennas and combine signals
 Can be directional

 Frequency diversity
 Spread signal over multiple frequencies/broader frequency band

 For example, spread spectrum

 Channel Diversity
 Distribute signal over multiple “channels”

 “Channels” experience independent fading 

 Reduces the error, i.e. only part of the signal is affected

 Time diversity
 Spread data out over time

 Expand bit stream into a richer digital signal
 Useful for bursty errors, e.g. slow fading

 A specific form of channel coding
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Spatial Diversity

 Use multiple antennas that pick up the signal in 
slightly different locations
 Can use more than two antennas!

 Each antenna experiences different channels
 If antennas are sufficiently separated, chances are that 

the signals are mostly uncorrelated

 If one antenna experiences deep fading, chances are 
that the other antenna has a strong signal
 Antennas should be separated by ½ wavelength or more

 Applies to both transmit and receive side
 Channels are symmetric
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Receiver Diversity

 Simplest solution
 Selection diversity: pick antenna with best SNR

 But why not use both signals?  
+ More information 

- Signals out of phase, e.g. kind of like multi-path

? Don’t amplify the noise

 Maximal ratio combining: combine signals with 
a weight that is based on their SNR
 Weight will favor the strongest signal (highest SNR)
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Transmit Diversity

 Same as receive diversity but the transmitter 

has multiple antennas

 Selection diversity: transmitter picks the best 

antenna

 i.e. with best channel to receiver

 Sender “precodes” the signal

 How does transmitter learn channel?

 Gets explicit feedback from the receiver

 Rely on channel reciprocity
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Typical Algorithm in 802.11 

 Use transmit + receive selection diversity 

 How to explore all channels to find the best one 
… or at least the best transmit antenna

 Receiver

 Use the antenna with the strongest signal

 Always use the same antenna to send the 
acknowledgement – gives feedback to the sender

Transmit Receiver
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Typical Algorithm in 802.11 

 Use transmit + receive selection diversity 

 How to explore all channels to find the best one 
… or at least the best transmit antenna

 Sender
 Pick an antenna to transmit and learn about the channel 

quality based on the ACK

 Occasionally try the other antenna to explore the 
channel between all four channel pairs

Transmit Receiver
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Spread Spectrum

 Spread transmission over a wider bandwidth
 Don’t put all your eggs in one basket!

 Good for military
 Jamming and interception becomes harder

 Also useful to minimize impact of a “bad” frequency in 
regular environments

 What can be gained from this apparent waste of 
spectrum?
 Immunity from various kinds of noise and multipath 

distortion

 Can be used for hiding and encrypting signals

 Several users can independently use the same higher 
bandwidth with very little interference
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Frequency Hopping Spread Spectrum 

(FHSS)

 Have the transmitter hop between a seemingly 
random sequence of frequencies
 Each frequency has the bandwidth of the original signal

 Dwell time is the time spent using one frequency

 Spreading code determines the hopping sequence
 Must be shared by sender and receiver (e.g. 

standardized)
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Example: Original 802.11 Standard (FH)

 96 channels of 1 MHz
 Only 78 used in US

 Other countries used different numbers

 Each channel carried only ~1% of the bandwidth

 1 or 2 Mbps per channel

 Dwell time was configurable
 FCC set an upper bound of 400 msec

 Transmitter/receiver must be synchronized

 Standard defined 26 orthogonal hop sequences
 Transmitter used a beacon on fixed frequency to inform the 

receiver of its hop sequence

 Can support multiple simultaneous transmissions – use 
different hop sequences
 e.g. up to 10 co-located APs with their clients
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Example: Bluetooth

 79 frequencies with a spacing of 1 MHz

 Other countries use different numbers of 

frequencies

 Frequency hopping rate is 1600 hops/s

 Maximum data rate is 1 MHz
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Direct Sequence Spread Spectrum (DSSS)

 Each bit in original signal is represented by multiple bits 
(chips) in the transmitted signal

 Spreading code spreads signal across a wider frequency 
band 
 Spread is in direct proportion to number of bits used

 e.g. exclusive-OR of the bits with the spreading code 

 The resulting bit stream is used to modulate the signal
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Direct Sequence Spread Spectrum (DSSS)

Fall 2020© CS/ECE 439 Staff, University of Illinois



Properties

 Each bit is sent as multiple chips
 Need more bps bandwidth to send signal

 Number of chips per bit = spreading ratio
 This is the spreading part of spread spectrum

 Need more spectral bandwidth 
 Nyquist and Shannon say so!

 Advantages
 Transmission is more resilient.

 DSSS signal will look like noise in a narrow band

 Can lose some chips in a word and recover easily

 Multiple users can share bandwidth
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Example: Original 802.11 Standard (DSSS)
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 DSSS PHY 
 1 Msymbol/s rate 

 11-to-1 spreading ratio 

 Barker chipping sequence
 Barker sequence has low autocorrelation properties

 The similarity between observations as a function of the time lag between them

 Uses about 22 MHz

 Receiver decodes by counting the number of “1” bits in 
each word
 6 “1” bits correspond to a 0 data bit

 Data rate 
 1 Mbps (i.e. 11 Mchips/sec)

 Extended to 2 Mbps
 Requires the detection of a ¼ phase shift



Example: 802.11b

 (Maximum) data rate 
 11 Mbs

 Complementary Code Keying (CCK)
 Complementary means that the code has good auto-

correlation properties
 Want nice properties to ease recovery in the presence of 

noise, multipath interference, ..

 Each word is mapped onto an 8 bit chip sequence

 Symbol rate at 1.375 MSymbols/sec, at 8 bpS = 11 Mbps 

 Symbol rate 
 1.375 MSymbols/sec, at 8 bpS = 11 Mbps 

Fall 2020© CS/ECE 439 Staff, University of Illinois



Code Division Multiple Access

 Users share spectrum and time, but use different 
codes to spread their data over frequencies
 DSSS where users use different spreading sequences

 Use spreading sequences that are orthogonal, i.e. they 
have minimal overlap

 Frequency hopping with different hop sequences

 The idea is that users will only rarely overlap and 
the inherent robustness of DSSS will allow users 
to recover if there is a conflict
 Overlap = use the same the frequency at the same time

 The signal of other users will appear as noise
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CDMA Principle

 Basic Principles of CDMA
 D = rate of data signal

 Break each bit into k chips - user-specific fixed pattern 

 Chip data rate of new channel = kD

 If k=6 and code is a sequence of 1s and -1s
 For a ‘1’ bit, A sends code as chip pattern 

 <c1, c2, c3, c4, c5, c6>

 For a ‘0’ bit, A sends complement of code
 <-c1, -c2, -c3, -c4, -c5, -c6>

 Receiver knows sender’s code and performs electronic 
decode function

 <d1, d2, d3, d4, d5, d6> = received chip pattern

 <c1, c2, c3, c4, c5, c6> = sender’s code

( ) 665544332211 cdcdcdcdcdcddSu +++++=
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CDMA Example

 User A code = <1, –1, –1, 1, –1, 1>
 To send a 1 bit = <1, –1, –1, 1, –1, 1>

 To send a 0 bit = <–1, 1, 1, –1, 1, –1>

 User B code = <1, 1, –1, – 1, 1, 1>
 To send a 1 bit = <1, 1, –1, –1, 1, 1>

 Receiver receiving with A’s code
 (A’s code) x (received chip pattern)

 User A ‘1’ bit: 6 -> 1

 User A ‘0’ bit: -6 -> 0

 User B ‘1’ bit: 0 -> unwanted signal ignored
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Categories of Spreading Sequences

 Spreading Sequence Categories 
 Pseudo-noise (PN) sequences

 Orthogonal codes

 For FHSS systems
 PN sequences most common

 For DSSS systems not employing CDMA
 PN sequences most common

 For DSSS CDMA systems
 PN sequences

 Orthogonal codes
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CDMA Discussion

 CDMA does not assign a fixed bandwidth but a user’s 
bandwidth depends on the load
 More users = more “noise” and less throughput for each 

user, e.g. more information lost due to errors

 How graceful the degradation is depends on how 
orthogonal the codes are

 TDMA and FDMA have a fixed channel capacity

 Contention based access is more flexible TDMA

 Weaker signals may be lost in the clutter
 This will systematically put the same node pairs at a 

disadvantage – not acceptable

 The solution is to add power control, i.e. nearby nodes use a 
lower transmission power than remote nodes
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CDMA Example

 CDMA cellular standard
 Used in the US, e.g. Sprint

 Allocates 1.228 MHz for base station to mobile 
communication
 Shared by 64 “code channels”
 Used for voice (55), paging service (8), and control (1)

 Provides a lot error coding to recover from 
errors
 Voice data is 8550 bps

 Coding and FEC increase this to 19.2 kbps
 Then spread out over 1.228 MHz using DSSS; uses 

QPSK 
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Discussion

 Spread spectrum is very widely used

 Effective against noise and multipath
 Signal looks like noise to other nodes

 Multiple transmitters can use the same frequency 
range

 FCC requires the use of spread spectrum in 
ISM band
 If signal is above a certain power level

 Is also used in higher speed 802.11 versions.
 No surprise!
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Time Redundancy: Bit Stream Level

 Protect digital data by introducing redundancy in the 
transmitted data
 Error detection codes: can identify certain types of errors

 Error correction codes: can fix certain types of errors

 Block codes provide Forward Error Correction (FEC) for 
blocks of data
 (n, k) code: n bits are transmitted for k information bits

 Simplest example: parity codes

 Many different codes exist: Hamming, cyclic, Reed-Solomon, …

 Convolutional codes provide protection for a continuous 
stream of bits
 Coding gain is n/k

 Turbo codes: convolutional code with channel estimation
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Time Diversity Example

 Spread blocks of bytes out over time

 Can use FEC or other error recovery 

techniques to deal with burst errors

A1 A2 A4A3 B1 B2 B4B3 C1 C2 C4C3

A1 A2D1 A3B1 B2 D2 B3C1 C2 D3C3
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Error Detection/Recovery
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 Adds redundant information that checks for 

errors

 And potentially fix them

 If not, discard packet and resend

 Occurs at many levels

 Demodulation of signals into symbols (analog)

 Bit error detection/correction (digital)—our main 

focus

 Within network adapter (CRC check)



Error Detection/Recovery
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 Analog Errors

 Example of signal distortion

 Hamming distance

 Parity and voting

 Hamming codes

 Error bits or error bursts?

 Digital error detection

 Two-dimensional parity 

 Cyclic Redundancy Check (CRC)



Analog Errors

 Consider the following encoding of ‘Q’
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Encoding isn’t perfect
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Encoding isn’t perfect
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Symbols
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Symbols

45º

15º

16-symbol example

 QAM

 Phase and amplitude 
modulation

 2-dimensional 
representation

 Angle is phase shift

 Radial distance is new 
amplitude
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Symbols

possible QAM symbol

neighborhoods in green; all

other space results in erasure

45º

15º

16-symbol example



Digital error detection and correction
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 Input: decoded symbols

 Some correct

 Some incorrect

 Some erased

 Output:

 Correct blocks (or codewords, or frames, or 

packets)

 Erased blocks



Error Detection Probabilities
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 Definitions
 Pb : Probability of single bit error (BER)

 P1 : Probability that a frame arrives with no bit errors

 P2 : While using error detection, the probability that a 

frame arrives with one or more undetected errors

 P3 : While using error detection, the probability that a 

frame arrives with one or more detected bit errors but 

no undetected bit errors



Error Detection Probabilities
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 With no error detection

 F = Number of bits per frame
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Error Detection Process
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 Transmitter
 For a given frame, an error-detecting code (check 

bits) is calculated from data bits

 Check bits are appended to data bits

 Receiver
 Separates incoming frame into data bits and check 

bits

 Calculates check bits from received data bits

 Compares calculated check bits against received 
check bits

 Detected error occurs if mismatch



Parity
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 Parity bit appended to a block of data

 Even parity

 Added bit ensures an even number of 1s

 Odd parity

 Added bit ensures an odd number of 1s

 Example

 7-bit character 1110001

 Even parity 1110001 0

 Odd parity 1110001 1



Parity: Detecting Bit Flips
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 1-bit error detection with parity

 Add an extra bit to a code to ensure an even (odd) 

number of 1s

 Every code word has an even (odd)  number of 1s

01 11

1000

Valid 

code 

words

110

000

011

101

010

100

111

001

Parity Encoding:

White – invalid 

(error)



Voting: Correcting Bit Flips
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 1-bit error correction with voting

 Every codeword is transmitted n times

 Codeword is 3 bits long

000

111

Voting:

White – correct to 1

Blue - correct to 0

110

011

101

010

100

001

0 1

Valid 

code 

words



Voting: 2-bit Erasure Correction
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 Every code word is copied 3 times

2-erasure planes in green

remaining bit not ambiguous

cannot correct 1-error and 1-

erasure

0??

?0?

010 110

100000

011 111

101001

??0



Hamming Distance
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 The Hamming distance between two code 

words is the minimum number of bit flips to 

move from one to the other

 Example:

 00101 and 00010 

 Hamming distance of 3



Minimum Hamming Distance
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 The minimum Hamming distance of a code is 

the minimum distance over all pairs of 

codewords

 Minimum Hamming Distance for parity

 2

 Minimum Hamming Distance for voting

 3



Coverage
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 N-bit error detection

 No code word changed into another code word

 Requires Hamming distance of N+1

 N-bit error correction

 N-bit neighborhood: all codewords within N bit 

flips

 No overlap between N-bit neighborhoods

 Requires hamming distance of 2N+1



Hamming Codes
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 Linear error-correcting code

 Named after Richard Hamming

 Simple, commonly used in RAM (e.g., ECC-

RAM)

 Can detect up to 2-bit errors

 Can correct up to 1-bit errors



Hamming Codes
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 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example: 
 4 bits of data, 3 

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7



Hamming Codes
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 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example: 
 4 bits of data, 3 
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1
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D3
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Hamming Codes
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 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j: XOR of all k for which (j AND k) = j

◼ Example: 
 4 bits of data, 3 

check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7



Hamming Codes
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D3

D5

C1

D6

C2

C4

D7



What are we trying to handle?
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 Worst case errors
 We solved this for 1 bit error

 Can generalize, but will get expensive for more bit errors

 Probability of error per bit
 Flip each bit with some probability, independently of others

 Burst model
 Probability of back-to-back bit errors

 Error probability dependent on adjacent bits

 Value of errors may have structure

 Why assume bursts?
 Appropriate for some media (e.g., radio)

 Faster signaling rate enhances such phenomena
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Digital Error Detection Techniques

 Two-dimensional parity
 Detects up to 3-bit errors

 Good for burst errors

 IP checksum
 Simple addition

 Simple in software

 Used as backup to CRC

 Cyclic Redundancy Check (CRC)
 Powerful mathematics

 Tricky in software, simple in hardware

 Used in network adapter



Two-Dimensional Parity
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 Use 1-dimensional parity
 Add one bit to a 7-bit code to 

ensure an even/odd number of 
1s

 Add 2nd dimension
 Add an extra byte to frame

 Bits are set to ensure even/odd 
number of 1s in that position 
across all bytes in frame

 Comments
 Catches all 1-, 2- and 3-bit and 

most 4-bit errors

1

0

1

1

1

0

1111011 0

Parity 

Bits

Parity 

Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data
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Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0



What happens if…
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0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped

Can also correct it!
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What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the two-bit error

0

Can’t detect a problem here

Can’t tell 

which bits 

are flipped, 

so can’t 

correct
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What about 2-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

If these 

four parity 

bits don’t 

match

Which bits 

could be in 

error?

Could be the dotted pair or the dashed pair.

Can’t correct 2-bit error.
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What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the three-bit error

0 0

But you 

can’t 
correct (eg 

if dashed 

bits got

flipped 

instead of 

the dotted 

ones)



What about 4-bit errors?
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0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Are there any 4-bit errors this scheme *can* detect?



What about 4-bit errors?
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0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

1

1

0

Can you think of a 4-bit error this scheme can’t detect?



Internet Checksum
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 Idea
 Add up all the words

 Transmit the sum

 Use 1’s complement addition on 16bit codewords

 Example
 Codewords: -5 -3

 1’s complement binary: 1010 1100

 1’s complement sum 1000

 Comments
 Small number of redundant bits

 Easy to implement

 Not very robust 

 Eliminated in IPv6
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IP Checksum
u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}

What could cause this check to fail?



Simplified CRC-like protocol

using regular integers

 Basic idea

 Both endpoints agree in advance on divisor value C = 3

 Sender wants to send message M = 10

 Sender computes X such that C divides 10M + X

 Sender sends codeword W = 10M + X

 Receiver receives W’ and checks whether C divides W’

 If so, then probably no error

 If not, then error
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Simplified CRC-like protocol

using regular integers

 Intuition

 If C is large, it’s unlikely that bits are flipped exactly to land 

on another multiple of C

 CRC is vaguely like this, but uses polynomials instead of 

numbers
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Cyclic Redundancy Check (CRC)

 Given
 Message M = 10011010

 Represented as Polynomial  M(x)
= 1 x7 + 0 x6 + 0 x5 + 1 x4 + 1 x3 + 0 x2 + 1 x + 0

= x7 + x4 + x3 + x

 Select a divisor polynomial C(x) with degree k

 Example with k = 3: 
 C(x) = x3 + x2 + 1

 Represented as 1101

 Transmit a polynomial P(x) that is evenly divisible by 

C(x)

 P(x) = M(x) xk + k check bits How can we determine 

these k bits?
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Properties of Polynomial Arithmetic

 Coefficients are modulo 2

(x3 + x) + (x2 + x + 1) = …

…x3 + x2 + 1

(x3 + x) – (x2 + x + 1) = …

…x3 + x2 + 1 also!

 Addition and subtraction are both xor!

 Need to compute R such that C(x) divides P(x) = M(x)•xk + 

R(x)

 So R(x) = remainder of M(x)•xk / C(x)

 Will find this with polynomial long division



Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC - Sender

 Given

 M(x) = 10011010 = x7 + x4 + x3 + x

 C(x) = 1101 = x3 + x2 + 1

 Steps
 T(x) = M(x)  xk (add zeros to increase deg. of  M(x) by k)

 Find remainder, R(x), from T(x)/C(x)

 P(x) = T(x) – R(x)  M(x) followed by R(x)

 Example
 T(x) = 10011010000

 R(x) = 101

 P(x) = 10011010101
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CRC - Receiver

 Receive Polynomial P(x) + E(x)

 E(x) represents errors

 E(x) = 0, implies no errors

 Divide (P(x) + E(x)) by C(x)

 If result = 0, either

 No errors (E(x) = 0, and P(x) is evenly divisible by C(x))

 (P(x) + E(x)) is exactly divisible by C(x), error will not be 
detected

 If result = 1, errors.
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CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k 

zeros

Result:

Transmit message 

followed by 

remainder:

10011010101

C(x) = x3 + x2 + 1 = 1101 Generator

M(x) = x7 + x4 + x3 + x = 10011010 Message
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CRC – Example Decoding – No Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

0

1101Remainder

m mod c

10011010101 Received 

message, no 

errors

Result:

CRC test is passed

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x6 + x4 + x2 + 1 = 10011010101 Received Message
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CRC – Example Decoding – with Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

0101

1101

Remainder

m mod c

10010110101 Received 

message

Result:

CRC test failed

Two bit errors

C(x) = x3 + x2 + 1 = 1101 Generator

P(x) = x10 + x7 + x5 + x4 + x2 + 1 = 10010110101 Received Message
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CRC Error Detection

 Properties

 Characterize error as E(x)

 Error detected unless C(x) divides E(x)

 (i.e., E(x) is a multiple of C(x))
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Example of Polynomial Multiplication

 Multiply 

 1101 by 10110

 x3 + x2 + 1 by x4 + x2 + x

1011
10110

1101
1101

1101

00011111110

This is a multiple of c, so 

that if errors occur 

according to this 

sequence, the CRC test 

would be passed



Fall 2020© CS/ECE 439 Staff, University of Illinois

CRC Error Detection

 What errors can we detect?
 All single-bit errors, if xk and x0 have non-zero coefficients

 All double-bit errors, if C(x) has at least three terms

 All odd bit errors, if C(x) contains the factor (x + 1)

 Any bursts of length < k, if C(x) includes a constant term

 Most bursts of length  k
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Common Polynomials for C(x)

CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +

x4 + x2 + x1 + 1
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Error Detection vs. Error Correction

 Detection
 Pro: Overhead only on messages with errors

 Con: Cost in bandwidth and latency for retransmissions

 Correction
 Pro: Quick recovery

 Con: Overhead on all messages

 What should we use?
 Correction if retransmission is too expensive

 Correction if probability of errors is high

 Detection when retransmission is easy and probability of 
errors is low


