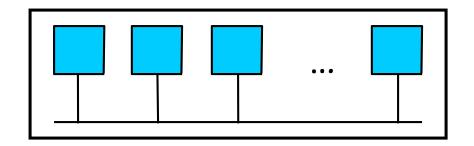
CS/ECE 439: Wireless Networking

MAC Layer – Road to Wireless

© CS/ECE 439 Staff, University of Illinois Fall 2020

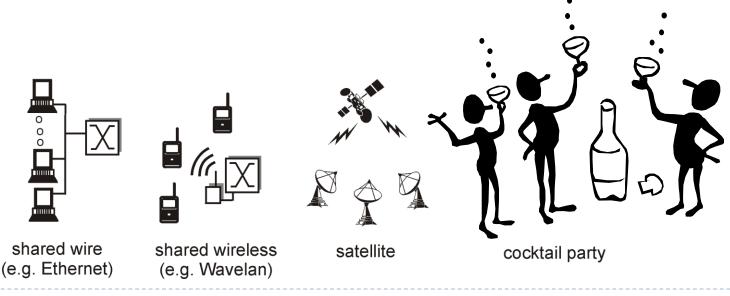

Multiple Access Media

Media access

- Controlling which frame should be sent over the link next
 - Easy for point-to-point links; half versus full duplex
 - Harder for multi-access links: who gets to send?
- Multiple senders on some media
 - Buses (Ethernet)
 - Radio, Satellite

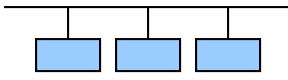
Goals

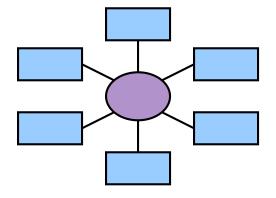
- Fair arbitration
- Good performance

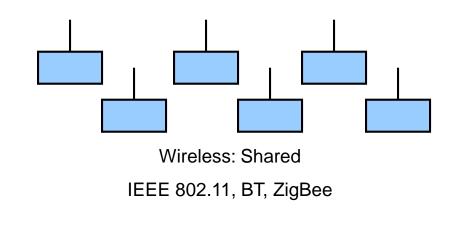


Point-to-Point vs. Broadcast Media

Point-to-point: dedicated pairwise communication


- Long-distance fiber link
- Point-to-point link between Ethernet switch and host
- Broadcast: shared wire or medium
 - Traditional Ethernet
 - > 802.11 wireless LAN


© CS/ECE 439 Staff, University of Illinois Fall 2020


Types of Shared Link Networks

Bus Topology: Shared Ethernet

Star Topology: Active or Passive Hub

© CS/ECE 439 Staff, University of Illinois Fall 2020

Multiple Access Algorithm

Single shared broadcast channel

- Must avoid having multiple nodes speaking at once
- Otherwise, collisions lead to garbled data
- Need distributed algorithm for sharing the channel
- Algorithm determines which node can transmit

Typical assumptions

- Communication needs vary
 - Over time
 - Between hosts
- Network is not fully utilized

• <u>video</u>

Multiple Access Media

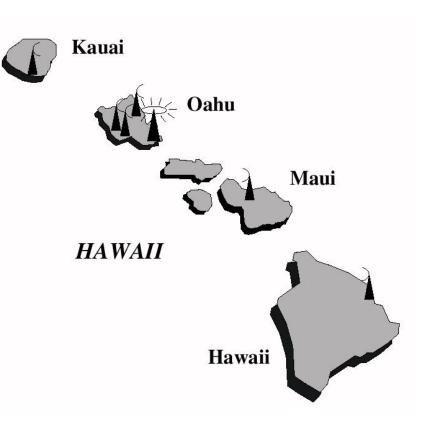
Which kind of multiplexing is best?

- Channel partitioning: divide channel into pieces
 - Frequency-division multiplexing (FDM, separate bands)
- Taking turns: scheme for trading off who gets to transmit
 - Time-division multiplexing (TDM, synchronous time slots)
 - Statistical time-division multiplexing (STDM, time slots on demand)

These techniques are useful

- But they have a number of limitations
- They do not support bursty traffic efficiently
 - Lots of unused capacity, ...
 - ... while active users squeeze their bit stream through a very thin pipe
- Work best in a provisioned service
 - Management of frequencies, time slots, placement of devices, etc.

Multiple Access Media: Random Access

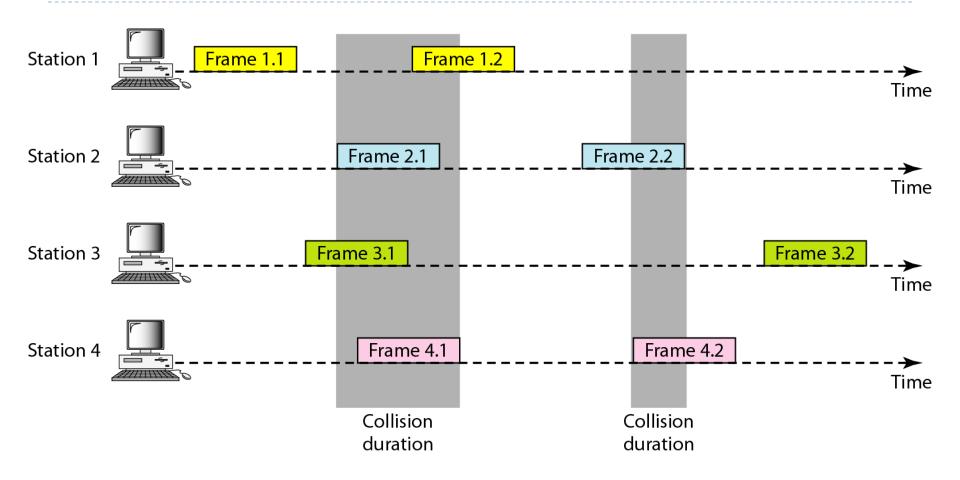

Random access

- Allow collisions, and then recover
- Optimize for the common case (no collision)
- Don't avoid collisions, just recover from them....
- When node has packet to send
 - Transmit at full channel data rate
 - No a priori coordination among nodes
- ► Two or more transmitting nodes ⇒ collision
 ► Data lost
- Random access MAC protocol specifies
 - How to detect collisions
 - How to recover from collisions

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

- Aloha Packet Radio Network
 - First data communication system for Hawaiian islands
 - Hub at U. Hawaii, Oahu
 - Two radio channels
 - Random access: for sites sending data
 - Broadcast for hub rebroadcasting data
- Ethernet
 - CSMA/CD for LANs

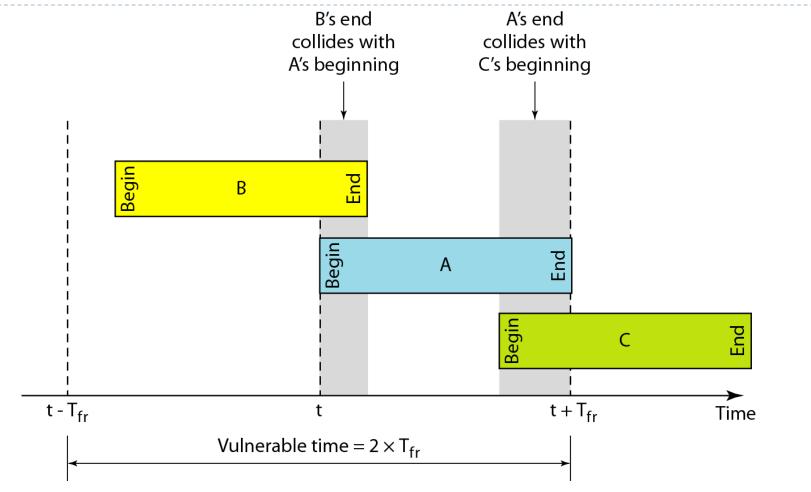
- Developed in University of Hawaii in early 1970's
- Keep it simple
 - User transmits at will
 - If two or more messages overlap in time \rightarrow collision
 - Receiver cannot decode packets
 - Wait roundtrip time plus a fixed increment \rightarrow collision
 - Lack of ACK
 - After a collision
 - Colliding stations retransmit
 - Stagger attempts randomly to reduce repeat collisions
 - After several attempts, senders give up
- Simple but wasteful
 - Max efficiency of at most I/(2e) = 18%!



User model

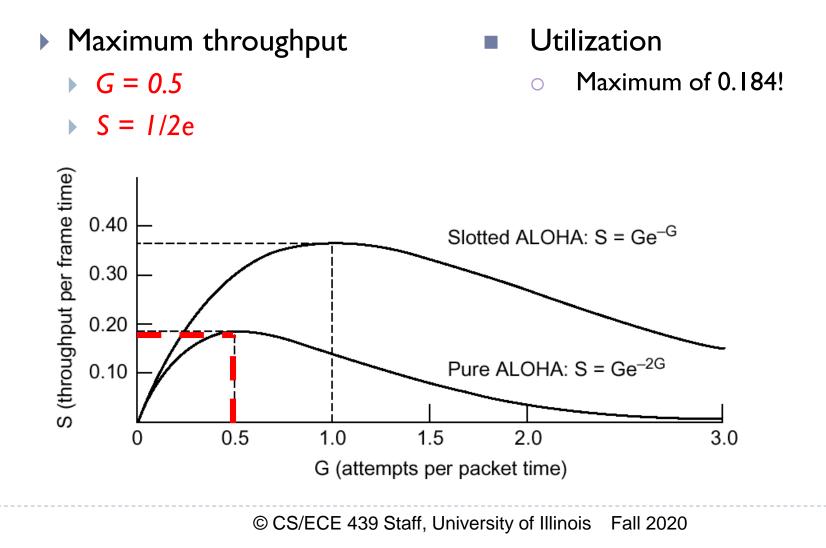
N transmitters

- Each transmitter hooked to one terminal
- One person at each terminal
- Person types a line, presses return
 - Transmitter sends line
 - \blacktriangleright Each station transmits λ packets/sec on average based on a Poisson arrival process
- Checks for success (no interference)
- If collision occurred, wait random time and resend



Collisions

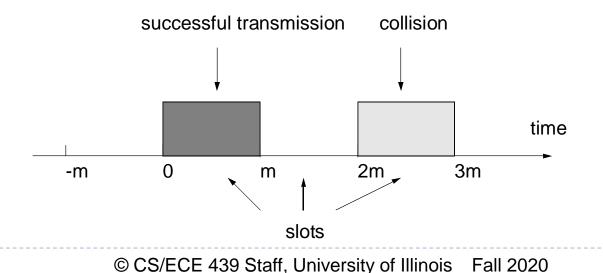
- A frame will not suffer a collision if no other frames are sent within one frame time of its start
- Let t = time to send a frame
- If any other user has generated a frame between time t₀ and time t₀ + t, the end of that frame will collide with the beginning of our frame
- Similarly, any other frame started between time $t_0 + t$ and time $t_0 + 2t$ will collide with the end of our frame



- Also assume fixed packet sizes (maximizes throughput)
- Arrival and success rates
 - Frames generated at rate S
 - In steady state, must leave at S as well
 - Some frames retransmitted
 - Assume also Poisson with rate G, G > S
- \blacktriangleright S = G P₀
 - P_0 is the probability of successful transmission

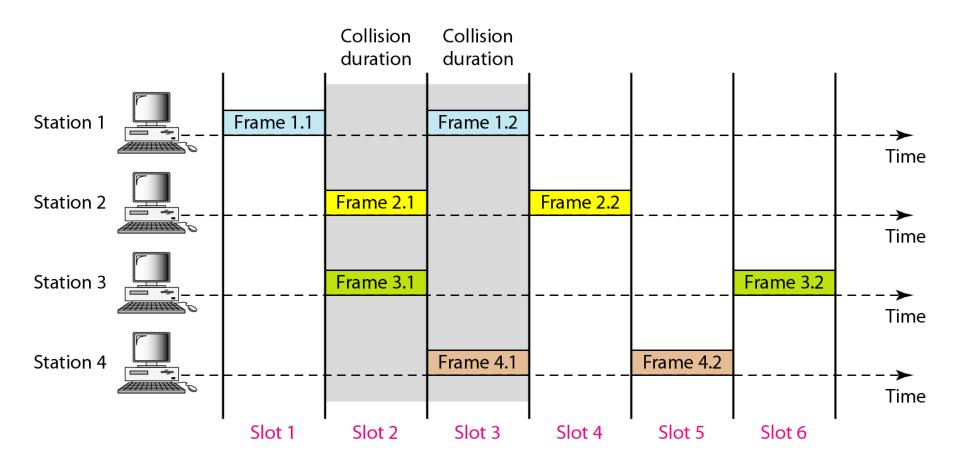
Pure Aloha Analysis

D



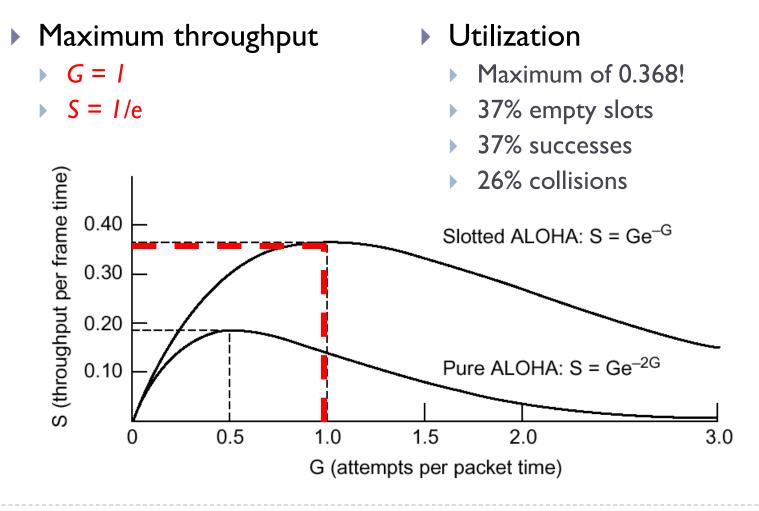
Hosts wait for next slot to transmit

- Slot time units = m (message length)
- Modify Aloha by allowing users to attempt transmission at the beginning of a time slot only
- All users need to be synchronized in time.


Vulnerable period is now cut in half (T)

Doubles max throughput

Slotted Aloha


In each interval *m*

- Mean number of frames generated is G
- The probability of no other traffic being generated during the entire vulnerable period is

$$P_0 = e^{-G}$$

 $S = Ge^{-G}$
Note: Not 2G

D

© CS/ECE 439 Staff, University of Illinois Fall 2020

Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only need slot synchronization
- Simple

Cons

- Wasted slots:
 - Idle
 - Collisions
- Nodes should detect collision in less than time to transmit packet
- Clock synchronization

Performance

- Higher values of G
 - Reduces the number of empty slots
 - Increases the number of collisions exponentially
- Small increases in channel load can drastically reduce performance

Limitations

- Slotted Alohas has twice the performance of basic Aloha, but performance is still poor
 - Slotted design is also not very efficient when carrying variable sized packets!
 - Also (slightly) longer delay than pure Aloha
- Still, not bad for an absolutely minimal protocol!
- How do we go faster?

ALOHA Analysis

Tradeoff

- Pure ALOHA provides smaller delays
- Slotted ALOHA provides higher throughput

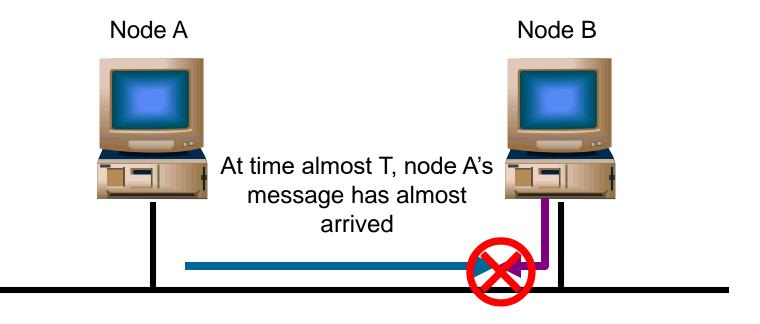
From Aloha comes Ethernet

Ethernet - CSMA/CD

CS – Carrier Sense

Nodes can distinguish between an idle and a busy link

MA - Multiple Access


A set of nodes send and receive frames over a shared link

CD – Collision Detection

 Nodes listen during transmission to determine if there has been interference

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

How can we ensure that A knows about the collision?

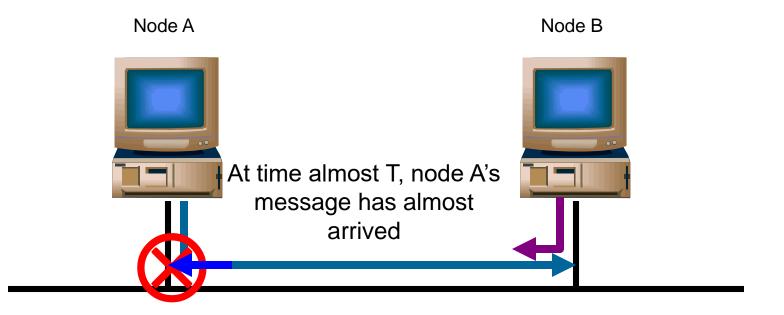
© CS/ECE 439 Staff, University of Illinois Fall 2020

Collision Detection

Problem

How can A detect a collision?

Solution


• A must still be transmitting when it receives B's transmission!

Example

- Node A's message reaches node B at time T
- Node B's message reaches node A at time 2T
- For node A to detect a collision, node A must still be transmitting at time 2T

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

At time 2T, A is still transmitting and notices a collision

© CS/ECE 439 Staff, University of Illinois Fall 2020

Collision Detection

▶ IEEE 802.3

- > 2T is bounded to $51.2\mu s$
- At IOMbps 51.2µs = 512b or 64 = 512b or 64B
- ▶ Packet length ≥ 64B
- Jam after collision
 - Ensures that all hosts notice the collision

Ethernet MAC Algorithm

Sender/Transmitter

- If line is idle (carrier sensed)
 - Send immediately
 - Send maximum of I 500B data (I 527B total)
 - Wait 9.6 μs before sending again
- If line is busy (no carrier sense)
 - Wait until line becomes idle
 - Send immediately (I-persistent)
- If collision detected
 - Stop sending and jam signal
 - Try again later

Why have a max size?

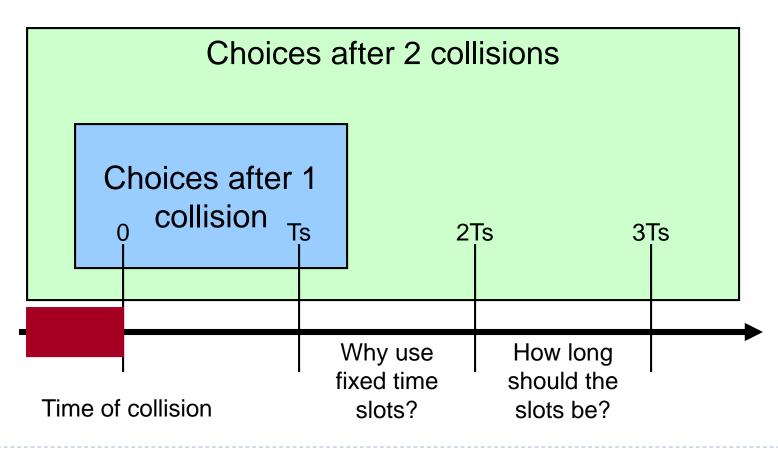
Want to prevent one node from taking over completely

Why 9.6 µs?

Too long: wastes time Too short: doesn't allow other nodes to transmit (fairness)

Incoming signal ≠ outgoing signal!

Retransmission


- How long should a host wait to retry after a collision?
- What happens if the host waits too long?
 - Wasted bandwidth
- What happens if the host doesn't wait long enough?
 - More collisions

Ethernet Solution

- Binary exponential backoff
 - Maximum backoff doubles with each failure
 - After N failures, pick an N-bit number
 - 2^N discrete possibilities from 0 to maximum

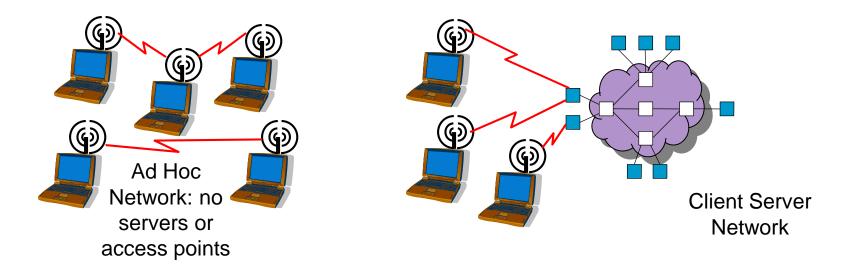
Binary Exponential Backoff

© CS/ECE 439 Staff, University of Illinois Fall 2020

Binary Exponential Backoff

- For IEEE 802.3,T = 51.2 μs
- Consider the following
 - k hosts collide
 - Each picks a random number from 0 to $2^{(N-1)}$
 - If the minimum value is unique
 - All other hosts see a busy line
 - Note: Ethernet RTT < 51.2 μs</p>
 - If the minimum value is not unique
 - Hosts with minimum value slot collide again!
 - Next slot is idle
 - Consider the next smallest backoff value

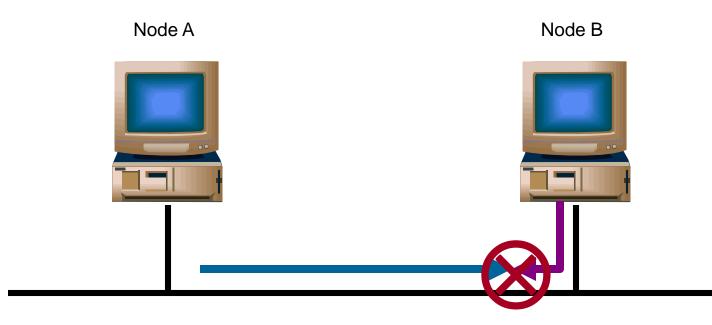
Binary Exponential backoff algorithm


- When collision first occurs
 - Send a jamming signal to prevent further data being sent
- Resend a frame
 - After either 0 or T seconds, chosen at random
- If resend fails, resend the frame again
 - After either 0, T, 2T, or 3T seconds.
 - In other words, send after kT seconds, where k is a random integer with $0 \le k \le 2^2$
- If that still doesn't work, resend the frame again
 - After kT, where k is a random number with $0 \le k \le 2^3$
- In general, after the n^{th} failed attempt, resend the frame after kT, where k is a random number and $0 \le k < 2^n$

Medium Access Control

▶ IEEE 802.11

 A physical and multiple access layer standard for wireless local area networks (WLAN)

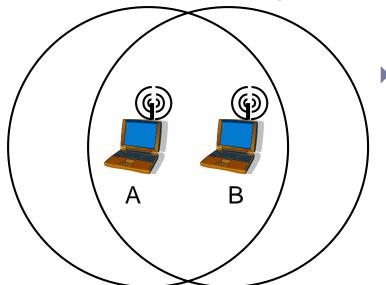


Medium Access Control

- Wireless channel is a shared medium
- Need access control mechanism to avoid interference
- Why not CSMA/CD?

Ethernet MAC Algorithm

- Listen for carrier sense before transmitting
- Collision: What you hear is not what you sent!


CSMA/CD in WLANs?

Most radios are functionally half-duplex

- Listening while transmitting is not possible
- Ratio of transmitted signal power to received power is too high at the transmitter
- Transmitter cannot detect competing transmitters (is deaf while transmitting)

Collision might not occur at sender

Collision at receiver might not be detected by sender!

Why do collisions happen?

- Near simultaneous transmissions
 - Period of vulnerability: propagation delay

Wireless Ethernet - CSMA/CA

CS – Carrier Sense

- Nodes can distinguish between an idle and a busy link
- MA Multiple Access
 - A set of nodes send and receive frames over a shared link

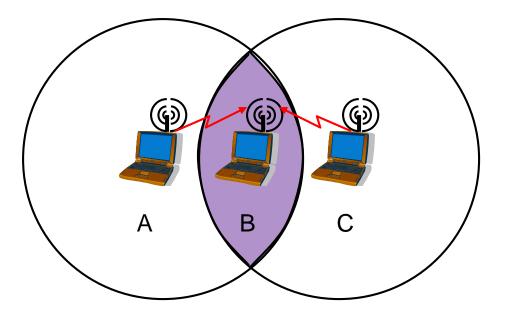
CD – Collision Detection

Nodes listen during transmission to determine if there has been interference

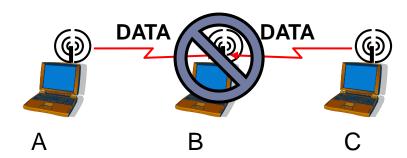
Wireless Ethernet - CSMA/CA

CS – Carrier Sense

- Nodes can distinguish between an idle and a busy link
- MA Multiple Access
 - A set of nodes send and receive frames over a shared link


CA – Collision Avoidance

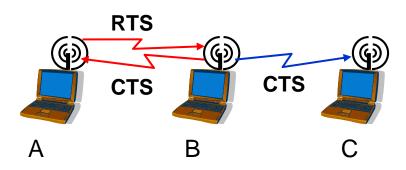
 Nodes use protocol to prevent collisions from occurring


IEEE 802.11 MAC Layer Standard

- Similar to Ethernet
- But consider the following:

Hidden Terminal Problem

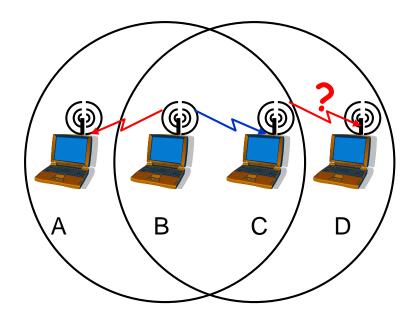
- Node B can communicate with both A and C
- A and C cannot hear each other
- When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
- If C transmits, collision will occur at node B



© CS/ECE 439 Staff, University of Illinois Fall 2020

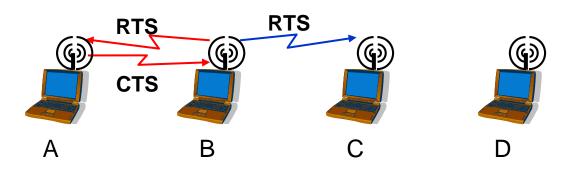
MACA Solution for Hidden Terminal Problem

- When node A wants to send a packet to node B
 - Node A first sends a Request-to-Send (RTS) to A
- On receiving RTS
 - Node A responds by sending Clear-to-Send (CTS)
 - provided node A is able to receive the packet
- When a node C overhears a CTS, it keeps quiet for the duration of the transfer



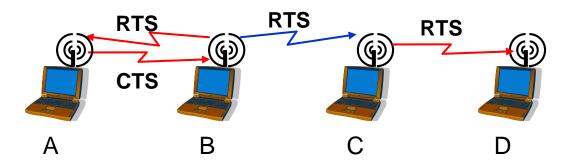
© CS/ECE 439 Staff, University of Illinois Fall 2020

IEEE 802.11 MAC Layer Standard


But we still have a problem

Exposed Terminal Problem

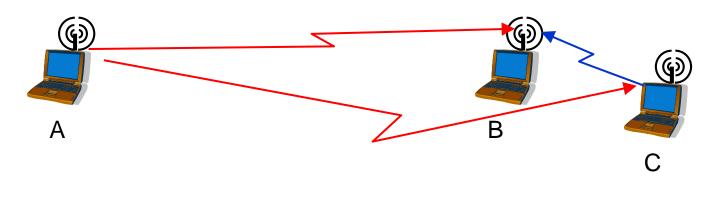
- B talks to A
- C wants to talk to D
- C senses channel and finds it to be busy
- C stays quiet (when it could have ideally transmitted)



© CS/ECE 439 Staff, University of Illinois Fall 2020

MACA Solution for Exposed Terminal Problem

- Sender transmits Request to Send (RTS)
- Receiver replies with Clear to Send (CTS)
- Neighbors
 - See CTS Stay quiet
 - See RTS, but no CTS OK to transmit



© CS/ECE 439 Staff, University of Illinois Fall 2020

Capture Effect

- C will almost always "win" if there is a collision at B
 - Can lead to extreme unfairness and even starvation
- Solution is power control
 - Very difficult to manage in a non-provisioned environment!

IEEE 802.11 MAC Layer Standard

- MACAW Multiple Access with Collision Avoidance for Wireless
 - Sender transmits Request to Send (RTS)
 - Receiver replies with Clear to Send (CTS)
 - Neighbors
 - See CTS
 - \Box Stay quiet
 - See RTS, but no CTS
 - \Box OK to transmit
 - Receiver sends ACK for frame
 - Neighbors stay silent until they hear ACK

Collisions

Still possible

RTS packets can collide!

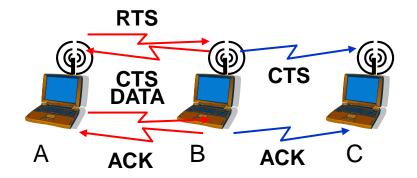
Binary exponential backoff

- Backoff counter doubles after every collision and reset to minimum value after successful transmission
- Performed by stations that experience RTS collisions

RTS collisions not as bad as data collisions in CSMA

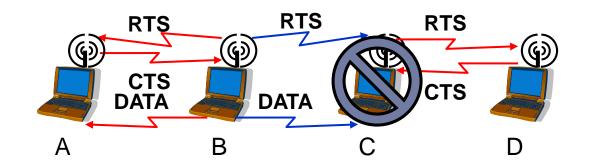
Since RTS packets are typically much smaller than DATA packets

Reliability


Wireless links are prone to errors

- High packet loss rate detrimental to transport-layer performance
- Mechanisms needed to reduce packet loss rate experienced by upper layers

A Simple Solution to Improve Reliability - MACAW


- When node B receives a data packet from node A, node B sends an Acknowledgement (ACK)
- If node A fails to receive an ACK
 - Retransmit the packet

Revisiting the Exposed Terminal Problem

- Problem
 - Exposed terminal solution doesn't consider CTS at node C
- With RTS-CTS, C doesn't wait since it doesn't hear A's CTS
 - With B transmitting DATA, C can't hear intended receiver's CTS
 - C trying RTS while B is transmitting is useless

© CS/ECE 439 Staff, University of Illinois Fall 2020

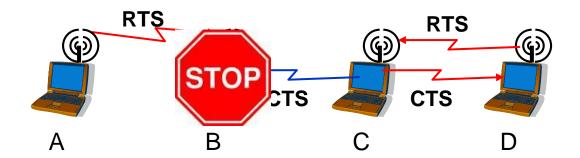
Revisiting the Exposed Terminal Problem - MACAW

One solution

Have C use carrier sense before RTS

Alternative

- B sends DS (data sending) packet before DATA
 - Short packet lets C know that B received A's CTS
 - Includes length of B's DATA so C knows how long to wait


Backoff Algorithm

- Binary exponential backoff (BEB)
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission
- Unfair channel allocation!
 - Successful transmitters reset backoff counter to minimum value
 - It is more likely that successful transmitters continue to be successful
 - If there is no maximum backoff
 - One station can get the entire channel bandwidth
- Ideally
 - The backoff counter should reflect the ambient congestion level which is the same for all stations involved!

Deafness

- For the scenario below
 - Node A sends an RTS to B
 - While node C is receiving from D,
 - Node B cannot reply with a CTS
 - B knows that D is sending to C
 - A keeps retransmitting RTS and increasing its own BO timeout

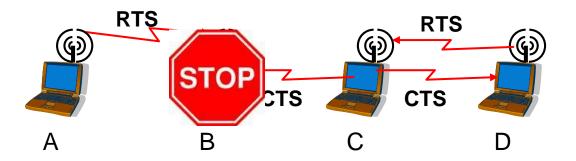
Revisiting the Exposed Terminal Problem - MACAW

One solution

Have C use carrier sense before RTS

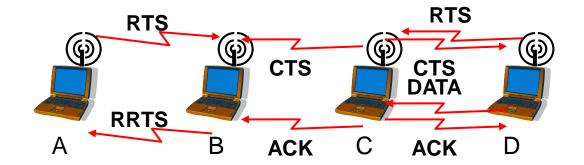
Alternative

- B sends DS (data sending) packet before DATA
 - Short packet lets C know that B received A's CTS
 - Includes length of B's DATA so C knows how long to wait


Backoff Algorithm

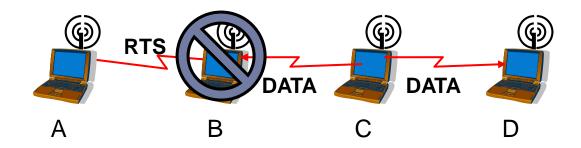
- Binary exponential backoff (BEB)
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission
- Unfair channel allocation!
 - Successful transmitters reset backoff counter to minimum value
 - It is more likely that successful transmitters continue to be successful
 - If there is no maximum backoff
 - One station can get the entire channel bandwidth
- Ideally
 - The backoff counter should reflect the ambient congestion level which is the same for all stations involved!

Deafness


- For the scenario below
 - Node A sends an RTS to B
 - While node C is receiving from D,
 - Node B cannot reply with a CTS
 - B knows that D is sending to C
 - A keeps retransmitting RTS and increasing its own BO timeout

Request for RTS - MACAW

- Have B do contention on behalf of A
 - If B receives RTS for which it must defer CTS reply
 - > Then B later sends RRTS to A when it can send
 - A responds by starting normal RTS-CTS
 - Others hearing RRTS defer long enough for RTS-CTS



© CS/ECE 439 Staff, University of Illinois Fall 2020

Another MACAW Proposal

- This approach, however, does not work in the scenario below
 - Node B may not receive the RTS from A at all, due to interference with transmission from C

Problem

Basic RTS-CTS only works for unicast transmissions

For multicast

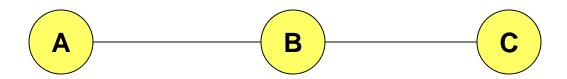
- RTS would get CTS from each intended receiver
- Likely to cause (many) collisions back at sender

Multicast - MACAW

- Sort-of solution
 - Don't use CTS for multicast data
- Receivers recognize multicast destination in RTS
 - Don't return CTS
 - Sender follows RTS immediately by DATA
 - After RTS, all receivers defer for long enough for DATA
- Helps, but doesn't fully solve problem
 - Like normal CSMA, only those in range of sender will defer
 - Others in range of receiver will not defer

IEEE 802.11

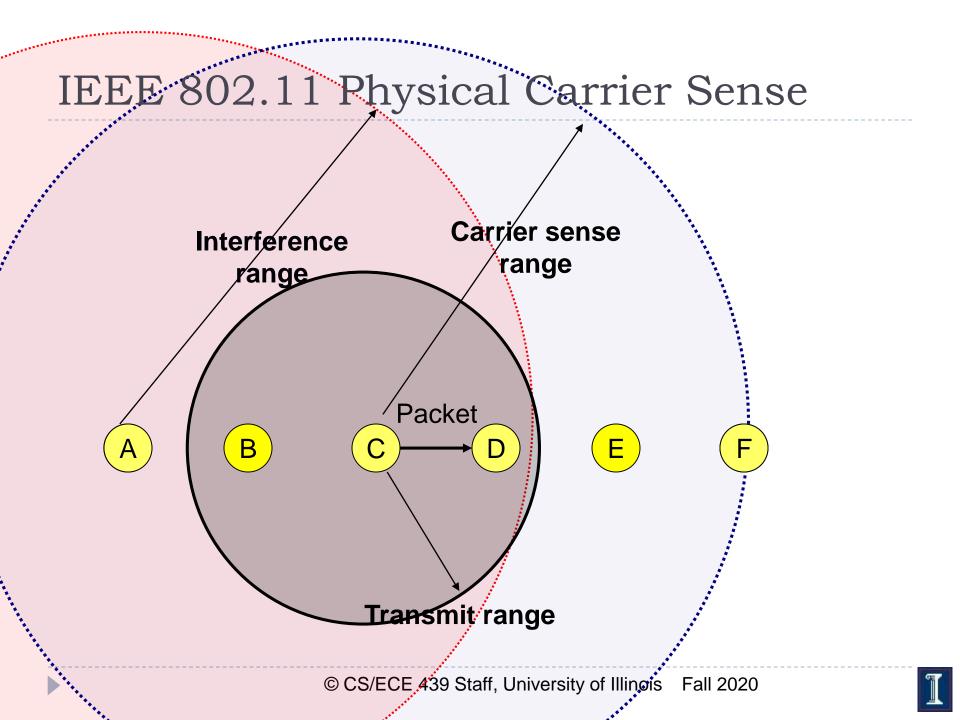
- MAC functionality
 - Addressing
 - CSMA/CA
- Error detection (FCS)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)

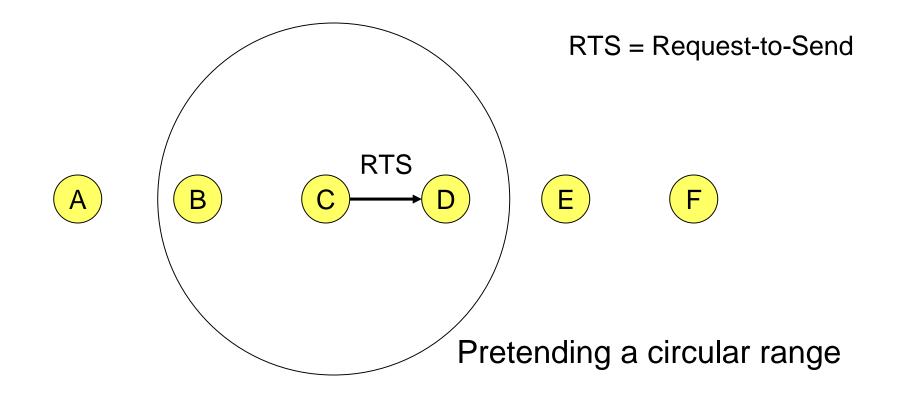

IEEE 802.11 Wireless MAC

- Distributed and centralized MAC components
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- DCF suitable for multi-hop ad hoc networking
- DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol

IEEE 802.11 DCF

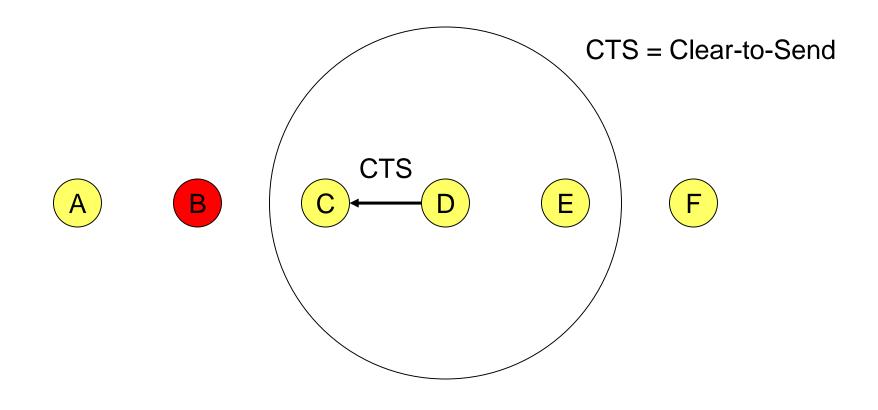
- Uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to achieve reliability
- Any node receiving the RTS cannot transmit for the duration of the transfer
 - To prevent collision with ACK when it arrives at the sender
 - When B is sending data to C, node A keeps quite

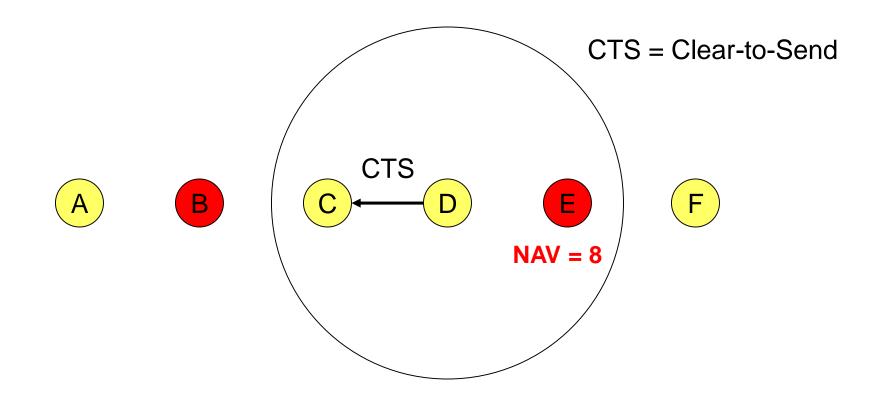

IEEE 802.11 CSMA/CA

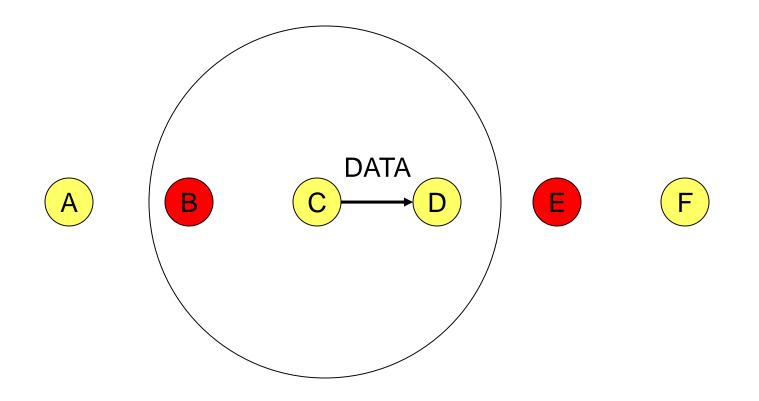

Nodes stay silent when carrier sensed

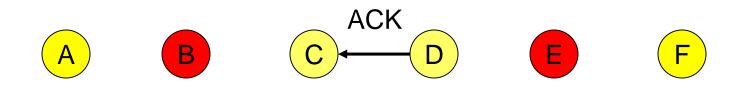
- Physical carrier sense
- Virtual carrier sense
 - Network Allocation Vector (NAV)
 - NAV is updated based on overheard RTS/CTS/DATA/ACK packets, each of which specified duration of a pending transmission

Backoff intervals used to reduce collision probability

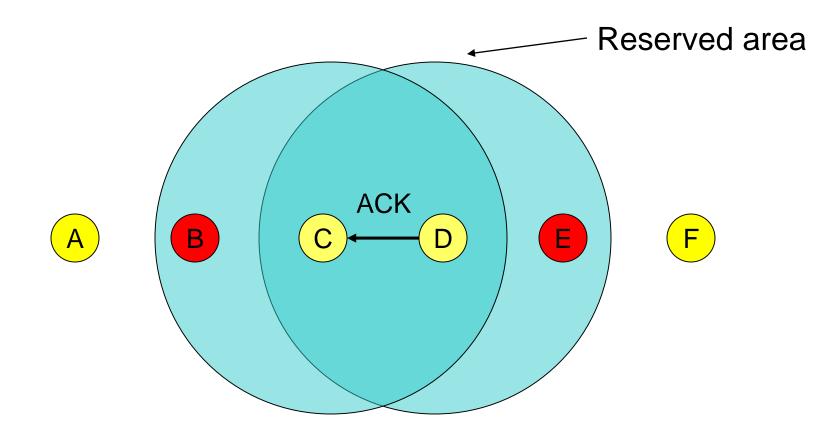








DATA packet follows CTS


Successful data reception acknowledged using ACK

IEEE 802.11

More features

Use of RTS/CTS is controlled by an RTS threshold

- Only used for data packets > threshold
- Pointless to use RTS/CTS for short data packets
 - High overhead!

Number of retries is limited by a Retry Counter

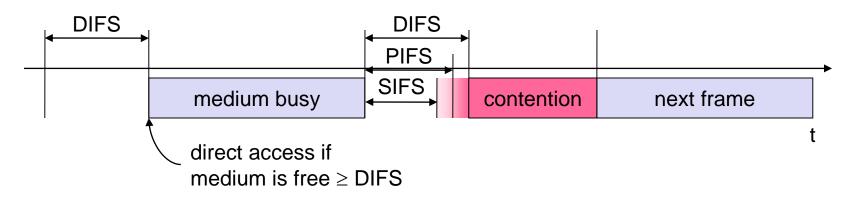
- Short retry counter
 - For packets shorter than RTS threshold
- Long retry counter
 - For packets longer than RTS threshold

Packets can be fragmented.

- Each fragment is acknowledged
- But all fragments are sent in one sequence
- Sending shorter frames can reduce impact of bit errors
- Lifetime timer: maximum time for all fragments of frame

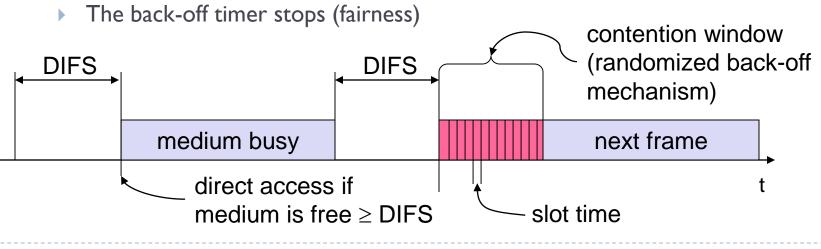
Ethernet vs. IEEE 802.11

If carrier is sensed


- Send immediately
- Send maximum of I 500B data (I 527B total)
- Wait 9.6 μs before sending again

- If carrier is sensed
 - When should a node transmit?

Interframe Spacing


- Interframe spacing
 - Plays a large role in coordinating access to the transmission medium
- Varying interframe spacings
 - Creates different priority levels for different types of traffic!
- 802.11 uses 4 different interframe spacings

IEEE 802.11 - CSMA/CA

- Sensing the medium
- If free for an Inter-Frame Space (IFS)
 - Station can start sending (IFS depends on service type)
- If busy
 - Station waits for a free IFS, then waits a random back-off time (collision avoidance, multiple of slot-time)
- If another station transmits during back-off time

© CS/ECE 439 Staff, University of Illinois Fall 2020

Types of IFS

SIFS

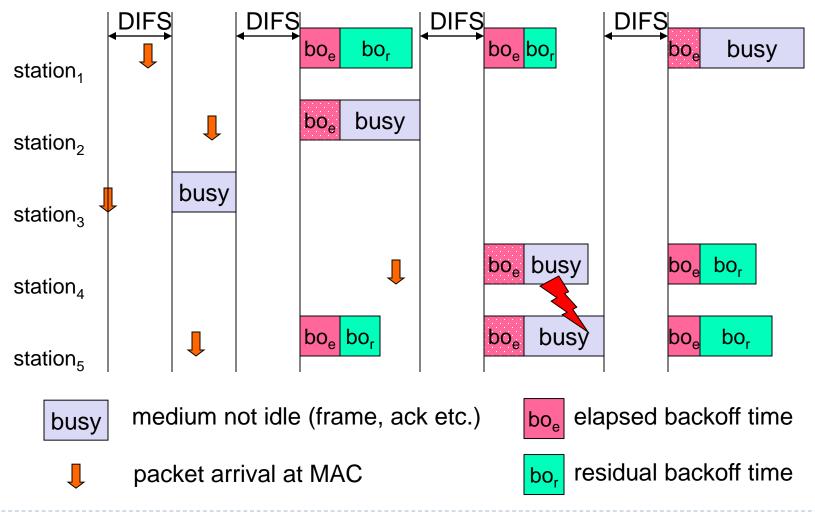
- Short interframe space
- Used for highest priority transmissions
- RTS/CTS frames and ACKs

DIFS

- DCF interframe space
- Minimum idle time for contention-based services (> SIFS)

Types of IFS

PIFS

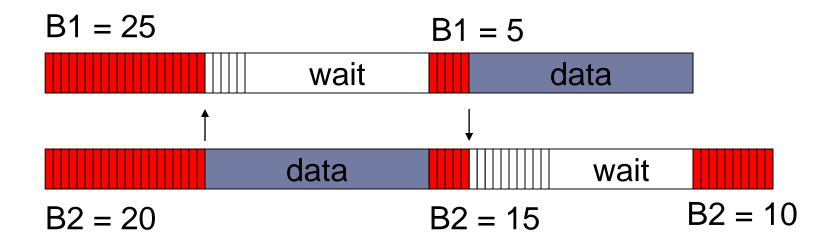

- PCF interframe space
- Minimum idle time for contention-free service (>SIFS, <DIFS)

EIFS

- Extended interframe space
- Used when there is an error in transmission

IEEE 802.11 - Competing Stations

© CS/ECE 439 Staff, University of Illinois Fall 2020



Backoff Interval

- When transmitting a packet, choose a backoff interval in the range [0,CW]
 - CW is contention window
- Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
- When backoff interval reaches 0, transmit RTS

DCF Example

CW = 31

D

B1 and B2 are backoff intervals at nodes 1 and 2

© CS/ECE 439 Staff, University of Illinois Fall 2020

Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
- Large CW
 - Large backoff intervals
 - Can result in larger overhead

Small CW

 Larger number of collisions (when two nodes count down to 0 simultaneously)

Backoff Interval

- The number of nodes attempting to transmit simultaneously may change with time
 - Some mechanism to manage contention is needed

IEEE 802.11 DCF

 Contention window CW is chosen dynamically depending on collision occurrence

Binary Exponential Backoff in DCF

- When a node fails to receive CTS in response to its RTS, it increases the contention window
 cw is doubled (up to an upper bound)
- When a node successfully completes a data transfer, it restores cw to CW_{min}
 - cw follows a sawtooth curve

IEEE 802.11 Frame Format

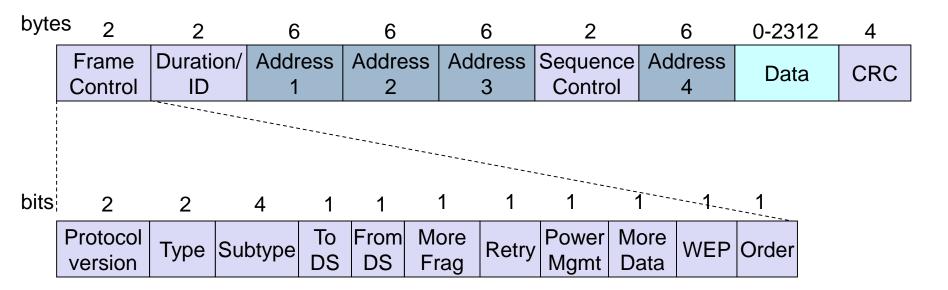
Types

control frames,
 management frames,
 data frames

Sequence numbers

 important against duplicated frames due to lost ACKs

Addresses

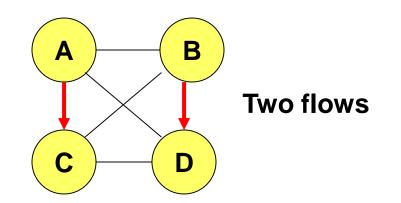

 receiver, transmitter (physical), BSS identifier, sender (logical)

Miscellaneous

sending time,
 checksum, frame
 control, data

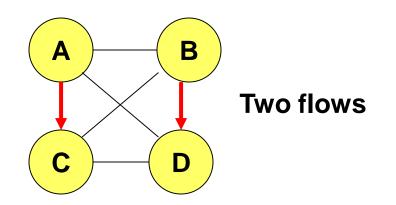
IEEE 802.11 Data Frame Format

IEEE 802.11 Control Frame Format


Acknowledgement

•	Request To Send		byte	es	2	2	6	4	
		ACK			ame ontrol	Duration	Receiver Address	CRC	
			byte	es	2	2	6	6	4
	Clear To Send	RTS			rame ontrol	Duration	Receiver Address	Transmitte Address	
			byt	es	2	2	6	4	
		CTS			rame ontrol	Duration	Receiver Address	CRC	

Fairness Issue


- Many definitions of fairness plausible
- Simplest definition
 - All nodes should receive equal bandwidth

Fairness Issue

- Assume that initially, A and B both choose a backoff interval in range [0,31] but their RTSs collide
- Nodes A and B then choose from range [0,63]
 - Node A chooses 4 slots and B choose 60 slots
 - After A transmits a packet, it next chooses from range [0,31]
 - It is possible that A may transmit several packets before B transmits its first packet

Fairness Issue

Unfairness

When one node has backed off much more than some other node

MACAW Solution

- When a node transmits a packet
 - Append the CW value to the packet
 - All nodes hearing that CW value use it for their future transmission attempts
- CW is an indication of the level of congestion in the vicinity of a specific receiver node
 - MACAW proposes maintaining CW independently for each receiver
- Per-receiver CW is particularly useful in multi-hop environments
 - Congestion level at different receivers can be very different

IEEE 802.11 Amendments

- IEEE 802.11-1997:
 - Originally I Mbit/s and 2 Mbit/s
 - > 2.4 GHz RF and infrared (IR)
- IEEE 802.11a:
 - 54 Mbit/s, 5 GHz standard (2001)
- IEEE 802.11b:
 - Enhancements to support 5.5 and 11 Mbit/s (1999)
- IEEE 802.11c:
 - Bridge operation procedures;
 - Included in the IEEE 802.1D standard (2001)
- IEEE 802.11d:
 - International (country-to-country) roaming extensions (2001)

- IEEE 802.11e:
 - Enhancements: QoS, including packet bursting (2005)
- IEEE 802.11g:
 - 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11h:
 - Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)
- IEEE 802.11i:
 - Enhanced security (2004)
- IEEE 802.11j:
 - Extensions for Japan (2004)
- IEEE 802.11-2007:
 - Updated standard including a, b, d, e, g, h, i and j. (2007)

IEEE 802.11 Amendments

- IEEE 802.11k:
 - Radio resource measurement enhancements (2008)
- IEEE 802.11n:
 - Higher throughput improvements using MIMO (multiple input, multiple output antennas) (September 2009)
- IEEE 802.11p:
 - WAVE—Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (2010)
- IEEE 802.11r:
 - Fast BSS transition (FT) (2008)
- IEEE 802.11s:

 Mesh Networking, Extended Service Set (ESS) (2011)

• IEEE 802.11u:

- Improvements related to HotSpots and 3rd party authorization of clients, e.g. cellular network offload (2011)
- IEEE 802.11v:
 - Wireless network management (2011)
- IEEE 802.11w:
 - Protected Management Frames (2009)
- IEEE 802.11y:
 - 3650–3700 MHz Operation in the U.S. (2008)
- IEEE 802.11z:
 - Extensions to Direct Link Setup (DLS) (2010)

IEEE 802.11 Amendments

- IEEE 802.11-2012:
 - New release including k, n, p, r, s, u, v, w, y and z (2012)
- IEEE 802.11aa:
 - Robust streaming of Audio
 Video Transport Streams (2012)
- IEEE 802.11ac:
 - Very High Throughput < 6GHz</p>
 - Potential improvements over 802.11n: better modulation scheme (expected ~10% throughput increase), wider channels (estimate in future time 80 to 160 MHz), multi user MIMO (2012)

- IEEE 802.11ad:
 - Very High Throughput 60 GHz (~ February 2014)
 - IEEE 802.11ae:
 - Prioritization of Management Frames (2012)
- IEEE 802.1 laf:
 - TV Whitespace (February 2014)

In process amendments

- IEEE 802.11ah:
 - Sub I GHz sensor network, smart metering. (~March 2016)
- IEEE 802.11ai:
 - Fast Initial Link Setup (~November 2015)
- IEEE 802.11aj:
 - China MM Wave (~June 2016)
- IEEE 802.11aq:
 - Pre-association Discovery (~July 2016)
- IEEE 802.11ak:
 - General Links (~ May 2016)
- IEEE 802.11mc:
 - Maintenance of the standard (~ March 2016)

- IEEE 802.1 lax:
 - High Efficiency WLAN (~ May 2018)
- IEEE 802.1 lay:
 - Enhancements for Ultra High Throughput in and around the 60 GHz Band (~TBD)
- IEEE 802.11az:
 - Next Generation Positioning (~ TBD)
- IEEE 802.11ba
 - Wake Up Radio (~ July 2020)
- IEEE 802.11bb:
 - Light Communications

Other Technologies

- IEEE 802.15 Wireless PAN
- IEEE 802.15.1
 - Bluetooth certification
- ▶ IEEE 802.15.2
 - IEEE 802.15 and IEEE 802.11 coexistence
- ▶ IEEE 802.15.3
 - High-Rate wireless PAN (e.g., UWB, etc)

▶ IEEE 802.15.4

- Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)
- ▶ IEEE 802.15.5
 - Mesh networking for WPAN

▶ IEEE 802.15.6

- Body area network
- ▶ IEEE 802.16
 - Broadband Wireless Access (WiMAX certification)

