CS/ECE 439: Wireless Networking

MAC Layer – Multi-Rate

© CS/ECE 439 Staff, University of Illinois Fall 2020

What is "Data Rate" really?

Number of bits that you transmit per unit time
under a fixed energy budget

- Too many bits/s
 - Each bit has little energy -> Hi BER
- Too few bits/s
 - Less BER but lower throughput

802.11b – Transmission rates

- Optimal rate depends on SINR
 - i.e., interference and current channel conditions

What is Multi-Rate?

- Ability of a wireless card to automatically operate at several different bit-rates
 (e.g. 1, 2, 5.5, and 11 Mbps for 802.11b)
- Part of many existing wireless standards
 (802.11b, 802.11a, 802.11g, HiperLAN2...)
- Virtually every wireless card in use today employs multi-rate

Example Carrier Modulations

Binary Phase Shift Keying

- One bit per symbol
- Made by the carrier and its inverse

Quadrature Phase Shift Keying

- Two bits per symbol
- Uses quadrature carrier in addition to normal carrier
 - (90° phase shift of carrier)
- A permutations for the inverse or not of the two carriers

Example Carrier Modulations (cont.)

I6 - Quadrature Amplitude Modulation

- 4 bits per symbol
- Also uses quadrature carrier
- Each carrier is multiplied by +3, +1, -1, or -3
 - (amplitude modulation)
- I6 possible combinations of the two multiplied carriers

Example Carrier Modulations (cont.)

64-QAM	Q 🛔			$b_0b_1b_2b_3b_4b_5$		
000_100	001_100	011_100 •	010 100 +7	111_100 •	101_100 •	100_100
000_101	001_101 •	011_101 •	010101_{+5} 110101	111_101 •	101_101 •	100_101
000_111	001 111	011_111 •	010 111 • $+3$ 110 111	111 111 •	101_111 •	100 111
000_110	001110	011_110	010 110 +1	111_110 •	101_110 •	100 110
-7 000_010	001 010	011 010	010 010 -1 110 010 -1 110 010	+3 111 010	+5 101_010	100 010 I
000_011	001_011	011_011 •	010011 - 3	111_011 •	101_011 •	100 011
000_001	001_001	011_001	$010001 \\ -5 \\ 110001$	111 001 •	101_001 •	100 001
000_000	001_000	011_000	010 000 -7	111 000 •	101_000	100_000
			I			

64 - Quadrature Amplitude Modulation

- 6 bits per symbol
- Also uses quadrature carrier
- Each carrier is multiplied by +7, +5, +3, +1, -1, -3, -5, or -7 (amplitude modulation)
- 64 possible combinations of the two multiplied carriers

802.11a Rates resulting from Carrier Modulation and Coding

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

Advantage of Multi-Rate?

- Direct relationship between communication rate and the channel quality required for that rate
- As distance increases, channel quality decreases
 - Tradeoff between communication range and link speed
- Multi-rate provides flexibility to meet both consumer demands

Throughput vs. Distance for 802.11a

802.11 Frame Exchange Overhead

Not all time is spent sending actual data

Multi-rate Frame in 802.11b

Figure 127—Long PLCP PPDU format

802.11b Frame Exchange Duration

Medium Time (milliseconds)

Medium Time consumed to transmit 1500 byte packet

© CS/ECE 439 Staff, University of Illinois

Multi-rate Frame in 802.11a

52 us

How do we choose modulation rates?

- Estimate a value of SINR
- Choose a corresponding rate that would transmit packets correctly most of the times
- Failure in some cases of fading
 - Live with it

Adaptive Rate-Control

- Observe the current value of SINR
 - Use as indicator of near-future value
- Choose corresponding rate of modulation
- Repeat
 - Controls rate if channel conditions have changed

Seems simple, but ...

Rate control has variety of implications

Any single MAC protocol solves part of the puzzle

Important to understand e2e implications

- Does routing protocols get affected?
- Does TCP get affected?
- •

Good to make a start at the MAC layer

- ARF
- RBAR
- OAR

Problem

D

 Modulation schemes have different error characteristics
 8 Mbps

Impact

D

Large-scale variation with distance (Path loss)

Impact

Small-scale variation with time (Fading)

Which modulation scheme is best?

© CS/ECE 439 Staff, University of Illinois Fall 2020

Answer \rightarrow Rate Adaptation

Dynamically choose the best modulation scheme for the channel conditions

How frequently should we adapt the rate?

- Signal can vary rapidly depending on
 - carrier frequency
 - node speed
 - interference
 - etc.

 For conventional hardware at pedestrian speeds, rate adaptation is feasible on a perpacket basis

Adaptation \rightarrow At Which Layer ?

Cellular networks

D

- Adaptation at the physical layer
- Impractical for 802.11 in WLANs

Adaptation \rightarrow At Which Layer ?

- Cellular networks
 - Adaptation at the physical layer
- Impractical for 802.11 in WLANs

RTS/CTS requires that the rate be known in advance

For WLANs, rate adaptation is best handled at the MAC layer

Why?

Who should select the data rate?

Who should select the data rate?

- Collision is at the receiver
- Channel conditions are only known at the receiver
 - SS, interference, noise, BER, etc.

The receiver is best positioned to select data rate

Lucent WaveLAN "Autorate Fallback" (ARF)

- Lost ACKs indicate link quality
- Sender decreases rate after
 - N consecutive ACKS are lost
- Sender increases rate after
 - Y consecutive ACKS are received or
 - T secs have elapsed since last attempt

Slow to adapt to channel conditions

Choice of N,Y,T may not be best for all situations

Receiver-Based Autorate (RBAR)

- Move the rate adaptation mechanism to the receiver
 - Better channel quality information = better rate selection
- Utilize the RTS/CTS exchange to
 - Provide the receiver with a signal to sample (RTS)
 - Carry feedback (data rate) to the sender (CTS)

Implementation into 802.11

Frame ControlDurationDASAFCSBSSIDSequence ControlBody	FCS
---	-----

← Reservation Subheader (RSH) →

- Encode data rate and packet length in duration field of frames
 - Rate can be changed by receiver
 - Length can be used to select rate
 - Reservations are calculated using encoded rate and length
- New DATA frame type with Reservation Subheader (RSH)
 - Reservation fields protected by additional frame check sequence
 - RSH is sent at same rate as RTS/CTS
- New frame is only needed when receiver suggests rate change

Evaluation

- Environment
 - Rayleigh fading
- Scenarios
 - Single-hop
- Protocols
 - RBAR and ARF

RBAR

- Channel quality prediction
 - SNR sample of RTS
- Rate selection:
 - Threshold-based
- Sender estimated rate:
 - Static (I Mbps)

Single-Hop Scenario

No Mobility - UDP Performance

- RSH overhead seen at high data rates
 - Can be reduced using some initial rate estimation algorithm
- Limitations of simple threshold-based rate selection seen
- Generally, still better than ARF

No Mobility - UDP Performance

- RBAR-P RBAR using a simple initial rate estimation algorithm
 - Previous rate used as estimated rate in RTS
- Better high-rate performance
- Other initial rate estimation and rate selection algorithms are a topic of future work

RBAR Summary

- Modulation schemes have different error characteristics
- Significant performance improvement may be achieved by MAC-level adaptive modulation
- Receiver-based schemes may perform best
 - Proposed Receiver-Based Auto-Rate (RBAR) protocol
 - Implementation into 802.11
- Future thoughts ...
 - RBAR without use of RTS/CTS
 - RBAR based on the size of packets
 - Routing protocols for networks with variable rate links

Can we do better?

Consider the situation below

- ARF?
- RBAR?

Motivation

- What if A and B are both at 56Mbps, and C is often at 2Mbps?
- Slowest node gets the most absolute time on channel?

Throughput Fairness vs Temporal Fairness

© CS/ECE 439 Staff, University of Illinois Fall 2020

MAC Layer Fairness Models

Per Packet Fairness

 If two adjacent senders continuously are attempting to send packets, they should each send the same number of packets

Temporal Fairness

 If two adjacent senders are continuously attempting to send packets, they should each be able to send for the same amount of medium time.

In single rate networks these are the SAME!

Opportunistic Scheduling

Goal

 Exploit short-time-scale channel quality variations to increase throughput

Issue

Maintaining temporal fairness (time share) of each node

Challenge

Channel info available only upon transmission

Opportunistic Auto-Rate (OAR)

- In many networks, there is intrinsic diversity
 - Exploiting this diversity can offer benefits
 - Transmit more when channel quality is high
 - else, free the channel quickly
- RBAR does not exploit this diversity
 - It optimizes per-link throughput

OAR Idea

Basic Idea

- Bad channel: transmit minimum number of packets
- Good channel: transmit as much as possible

Why is OAR better?

802.11 alternates between transmitters A and C

Why is that bad

Why is OAR better ?

- ▶ Bad channel reduces SINR → increases transmit time
 - Fewer packets can be delivered

OAR Protocol Steps

- Transmitter estimates current channel
 - Can use estimation algorithms
 - Can use RBAR, etc.
- If channel better than base rate (2 Mbps)
 - Transmit proportionally more packets
 - e.g., if channel can support 11 Mbps, transmit (11/2 ~ 5) pkts
- OAR upholds temporal fairness
 - Each node gets same duration to transmit
 - Sacrifices throughput fairness \rightarrow the network gains!!

OAR Protocol

Protocol	Channel Condition						
	BAD		MEDIUM		GOOD		
	Pkts	Rate	Pkts	Rate	Pkts	Rate	
802.11	1	2	1	2	1	2	
802.11b	1	2	1	5.5	1	11	
OAR	1	2	3	5.5	5	11	

Rates in IEEE 802.11b: 2, 5.5, and 11 Mbps

Evaluation

Simulation experiments

- Fully connected network: all nodes in radio range of each other
 - Number of Nodes, channel condition, mobility, node location

Fully Connected Setup

- Every node can communicate with everyone
- Each node's traffic is at a constant rate and continuously backlogged
- Channel quality is varied dynamically

Fully Connected Throughput Results

- OAR vs. RBAR
 - 42% to 56% gain
- Gain increases with the number of flows
- Note
 - Both RBAR and OAR are significantly better than standard 802.11
 - > 230% and 398% respectively

OAR thoughts

OAR does not offer benefits when

- Neighboring nodes do not experience diverse channel conditions
- Coherence time is shorter than N packets

Summary

Rate control can be useful

- When adapted to channel fluctuations (RBAR)
- When opportunistically selecting transmitters (OAR)

Benefits maximal when

- Channel conditions vary widely in time and space
- Correlation in fluctuation can offset benefits
 OAR may show negligible gains

What lies ahead ?

Dual of rate-control is power control

- One might be better than the other
- Decision often depends on the scenario \rightarrow open problem

