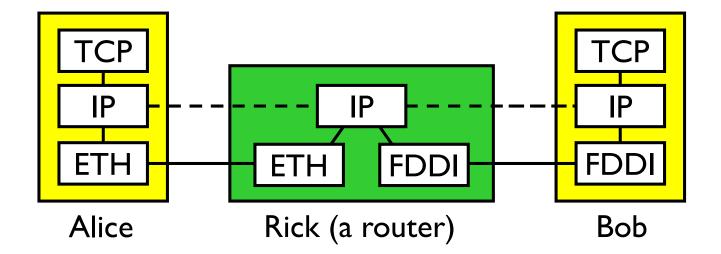

CS/ECE 439: Wireless Networking

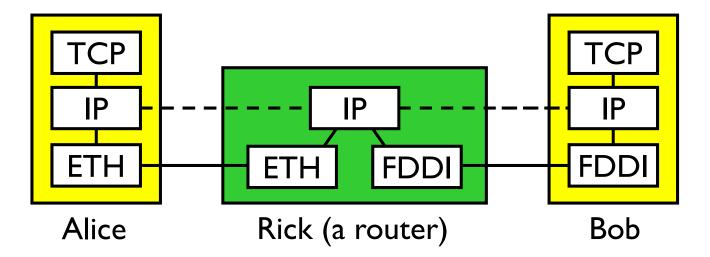
What you need to know about the Internet to understand the challenges of wireless and mobile hosts

© CS/ECE 439 Staff, University of Illinois Fall 2020

IP and the Internet


- Network-level protocol for the Internet
- Operates on all hosts and routers
 - Routers are nodes connecting distinct networks to the Internet

© CS/ECE 439 Staff, University of Illinois Fall 2020



Layering

Message Transmission

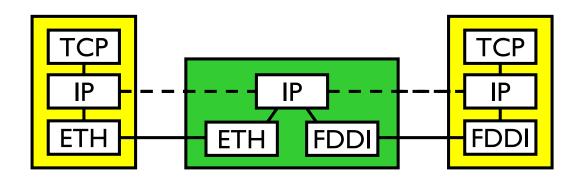
- I.Alice/application finds Bob's IP address, sends packet
- 2. Alice/IP forwards packet to Rick
- 3. Alice/IP looks up Rick's Ethernet address and sends
- 4. Rick/IP forwards packet to Bob
- 5. Rick/IP looks up Bob's FDDI address and sends

Internet Protocol Service Model

Service provided to transport layer (TCP, UDP)

- Global name space
- Host-to-host connectivity (connectionless)
- Best-effort packet delivery
- Not in IP service model

Delivery guarantees on bandwidth, delay or loss


Delivery failure modes

- Packet delayed for a very long time
- Packet loss
- Packet delivered more than once
- Packets delivered out of order

IPv4 Address Translation support

- IP addresses to LAN physical addresses
- Problem
 - An IP route can pass through many physical networks
 - Data must be delivered to destination's physical network
 - Hosts only listen for packets marked with physical interface names
 - Each hop along route
 - Destination host

IP to Physical Address Translation

Hard-coded

- Encode physical address in IP address
- Ex: Map Ethernet addresses to IP addresses
 - Makes it impossible to associate address with topology

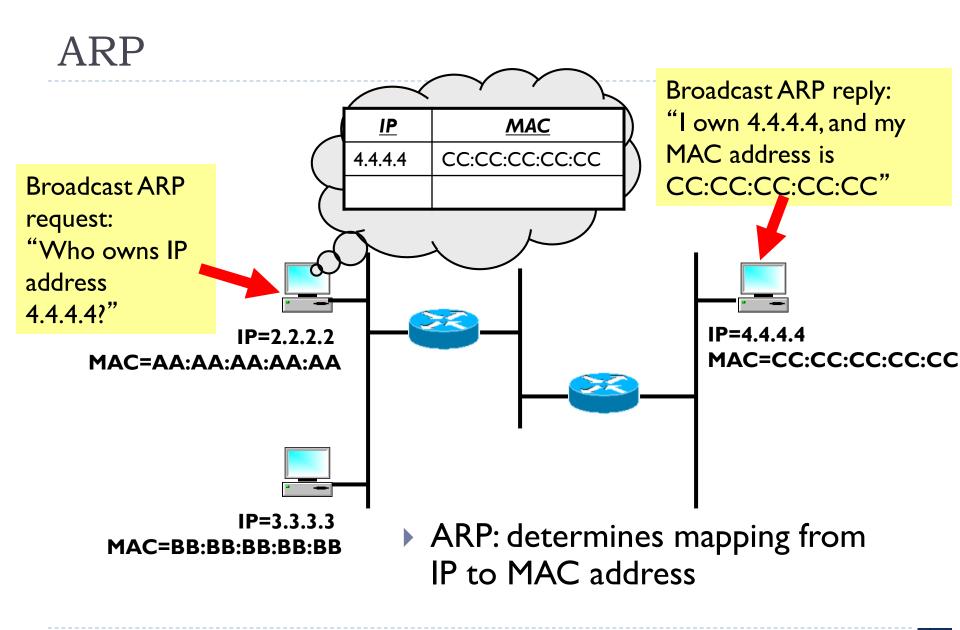
Fixed table

Maintain a central repository and distribute to hosts

Bottleneck for queries and updates

Automatically generated table

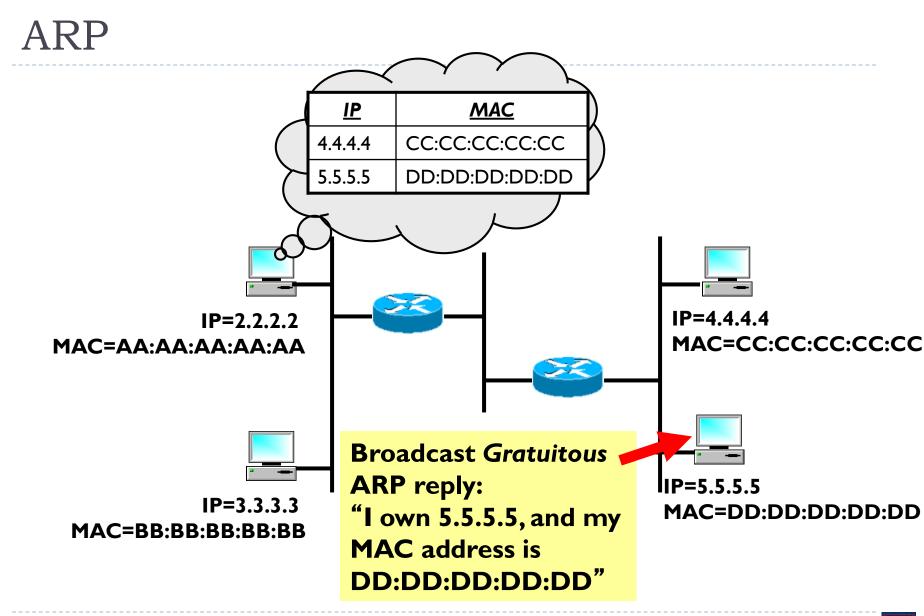
- Use ARP to build table at each host
- Use timeouts to clean up table


ARP: Address Resolution Protocol

- ARP table contains physical address mappings
- If target address not present
 - Broadcast an ARP query, include querying host's translation
 - Wait for an ARP response

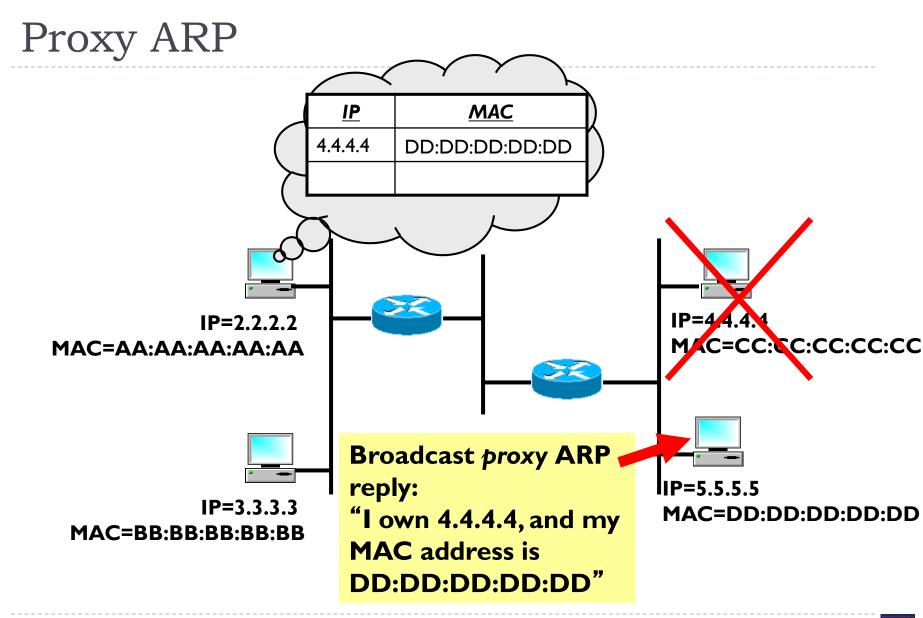
Upon receipt of ARP query/response

- Targeted host responds with address translation
- If address already present
 - Refresh entry and reset timeout
- If address not present
 - Add entry for requesting host
 - Ignore for other hosts
- Timeout and discard entries after O(10) minutes



ARP

What if IP address is not on subnet?


- Each host configured with "default gateway"
- Use ARP to resolve its IP address
- Gratuitous ARP: tell network your IP to MAC mapping
 - Used to detect IP conflicts, IP address changes; update other machines' ARP tables, update bridges' learned information

© CS/ECE 439 Staff, University of Illinois Fall 2020

© CS/ECE 439 Staff, University of Illinois Fall 2020

Host Configuration

Plug new host into network

- How much information must be known?
- What new information must be assigned?
- How can process be automated?

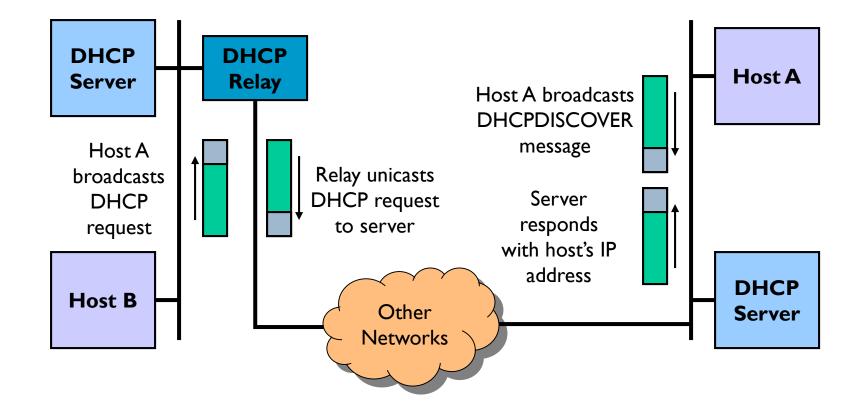
Some answers

- Host needs an IP address (must know it)
- Host must also
 - Send packets out of physical (direct) network
 - Thus needs physical address of router

Dynamic Host Configuration Protocol (DHCP)

A simple way to automate configuration information

- Network administrator does not need to enter host IP address by hand
- Good for large and/or dynamic networks


Dynamic Host Configuration Protocol (DHCP)

- New machine sends request to DHCP server for assignment and information
- Server receives
 - Directly
 - If new machine given server's IP address
 - Through broadcast
 - If on same physical network
 - Via DHCP relay nodes
 - $\hfill\square$ Forward requests onto the server's physical network
- Server assigns IP address and provides other info
- Can be made secure
 - Present signed request or just a "valid" physical address

DHCP

D

What does this all have to do with Mobility?

Internet Architecture Assumptions

- Hosts are (mostly) stationary
 - Address assignment, routing

But

- Many clients today are mobile
- Mobility inside a subnet is supported
 - e.g. moving across APs that are part of a single network
- Mobility across subnets is harder
 - IP address is used as address and identifier
 - □ Identifier: who are you?
 - □ Address: where can I find you?

Mobility options

- Keep IP address
 - Network gets confused
 - Delivers packets to wrong "old" subnet

New IP address

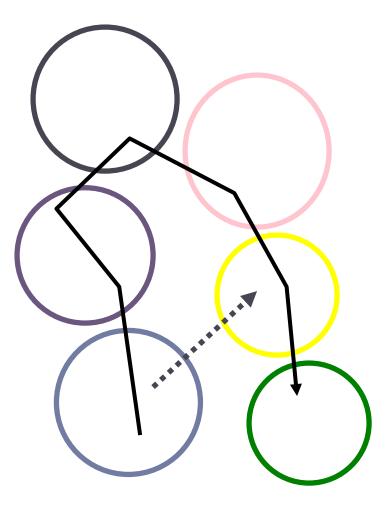
- Host gets confused
- Transport protocols, applications, etc.

Mobility across IP Subnets

Moving across IP subnets

Different protocols have conflicting requirements

Network layer

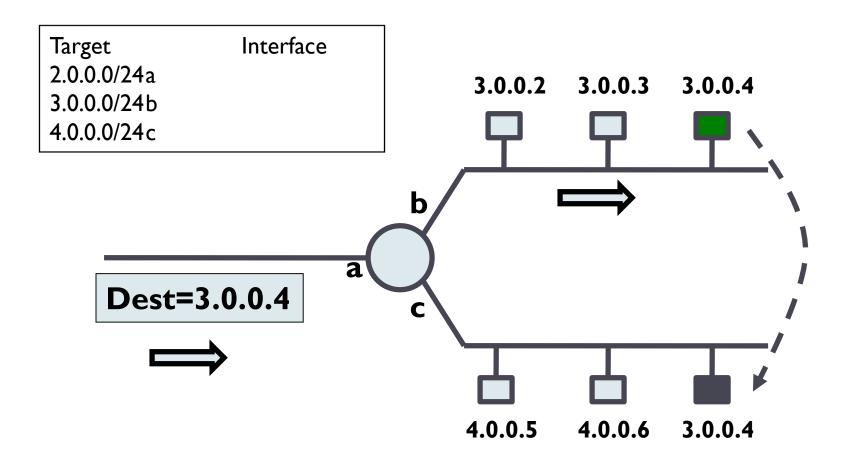

- Wants IP address in current subnet
- Needed for routing of packets

Transport layer

- Wants IP address that was used to create connection
- Needed to identify the connection

Applications

- Often do not care
- In practice, they want to keep the IP address the same
- Tied to sockets



IP Address Problem

- Internet hosts/interfaces are identified by IP address
 - DNS translates host name to IP address
 - IP address identifies host/interface and locates its network
 - Mixes naming and location

Traditional Routing for a Mobile Host

IP Address Problem

- Internet hosts/interfaces are identified by IP address
 - DNS translates host name to IP address
 - IP address identifies host/interface and locates its network
 - Mixes naming and location
- Moving to another network requires different network address
 - But this would change the host's identity
 - How can we still reach that host?

Mobile IP Goals

- Communicate with mobile hosts using their "home" IP address
 - Allows any host to contact mobile host using its "usual" IP address
- Mobility should be transparent to applications and higher level protocols
 - No need to modify the software
- Minimize changes to host and router software
 No changes to communicating host

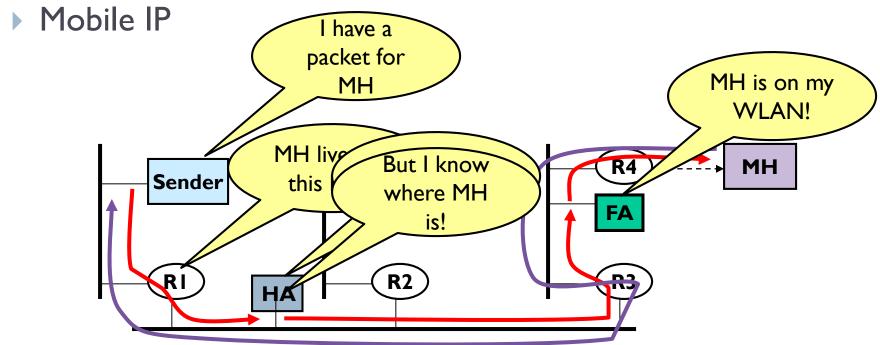
Routing for Mobile Hosts

Problem

How can mobility be supported in view of the fact that a portion of an IP address is a network address?

Solution: Location Registry

Mobile IP



Routing for Mobile Hosts

Problem

How can mobility be supported in view of the fact that a portion of an IP address is a network address?

Solution: Location Registry

Why Mobile IP?

Goal

IP-based protocol that allows network connectivity across host movement

Features

- Doesn't require global changes to deployed router software, etc.
- Compatible with large installed base of IPv4 networks/hosts
- Confines changes to mobile hosts and a few support hosts which enable mobility

Basic Mobile IP

Features

- Transparent routing of packets to a mobile host
- No modification of existing routers or non-mobility supporting hosts

Problem

Indirect routing places unnecessary burden on the internet and significant increases latency

Components

Mobile Host (MH)

Assigned a unique home address within its home network

Corresponding Hosts (CH)

- Other hosts communicating with the MH
- Always use MH's home address

Routing for Mobile Hosts

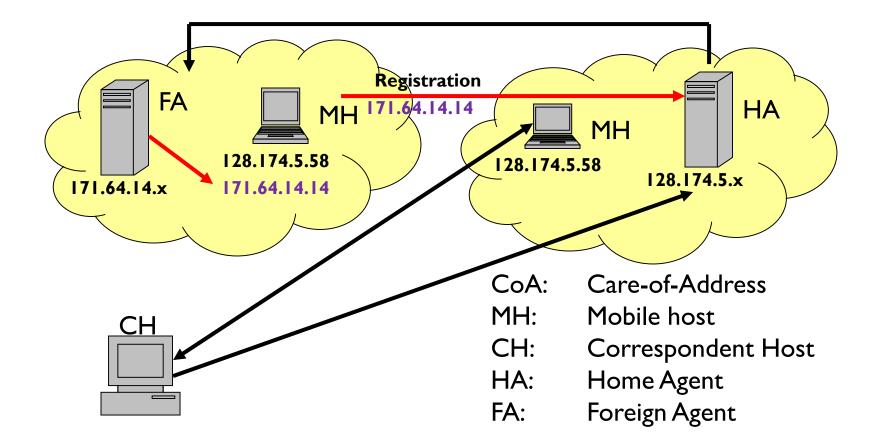
- Home Agent (HA):
 - An agent on the MH's *home network*
 - Maintains registry of MH's care-of-address
 - Mobility binding is the connection between the MH's home address and care-of-address
 - Each time the MH establishes a new *care-of-address*, it must register with its HA

• Foreign Agent (FA):

- An agent on the MH's *local network*
- Maintains a mapping from the MH's home address to its careof-address

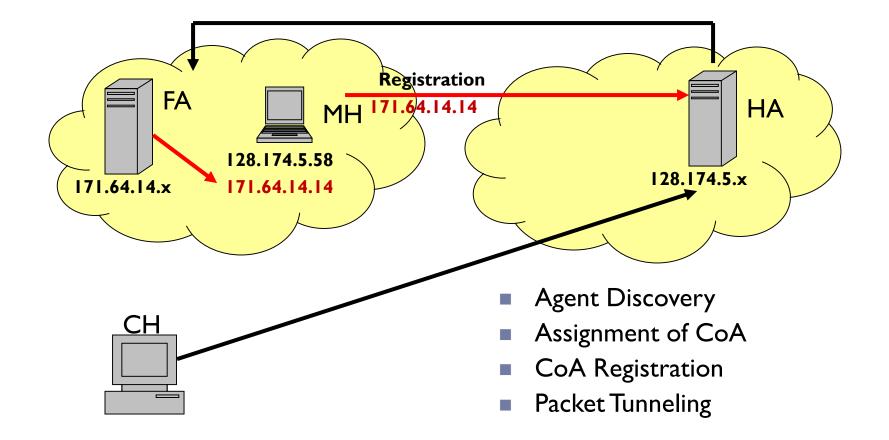
Issues

Scenario


CH sends packet to home network

Challenges

- How does the MH get a local IP address?
- How can a mobile host tell where it is?
- How does the HA intercept a packet that is destined for the MH?
- How does the HA then deliver the packet to the FA?
- How does the FA deliver the packet to the MH?



Basic Mobile IP

Basic Mobile IP

Addressing

How does the mobile host get a remote IP address?

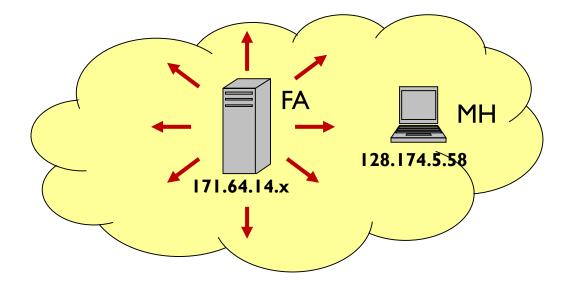
- Listen for router advertisements
- Use DHCP
- Manual assignment
- Assigning care-of-address
 - MH discovers foreign agent (FA) using an agent discovery protocol
 - MH registers with FA and FA's address becomes MH's careof-address
 - MH obtains a temporary IP address from FA or via DHCPlike procedures

Location

How can a mobile host tell where it is?

- Am I at home?
- Am I visiting a foreign network?
- Have I moved?

Same!


- Listen for router advertisements
- Put network interface into promiscuous mode and watch traffic

Agent Discovery

How can a mobile host tell where it is?

- Extension of ICMP protocol
 - Allows MH to detect when it has moved from one network to another, or to home
- FA Periodically broadcasts agent advertisement message

Agent Discovery

Register with FA

MH determines a suitable FA (or its HA)

Send agent solicitation message

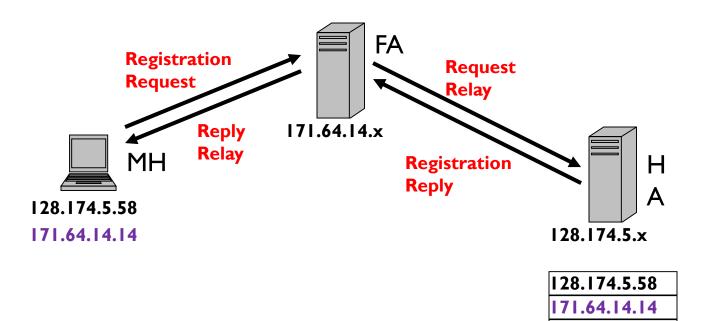
If MA has not received a broadcast for a period of time

Packet Delivery

How does the HA intercept a packet that is destined for the MH?

While MH in foreign location

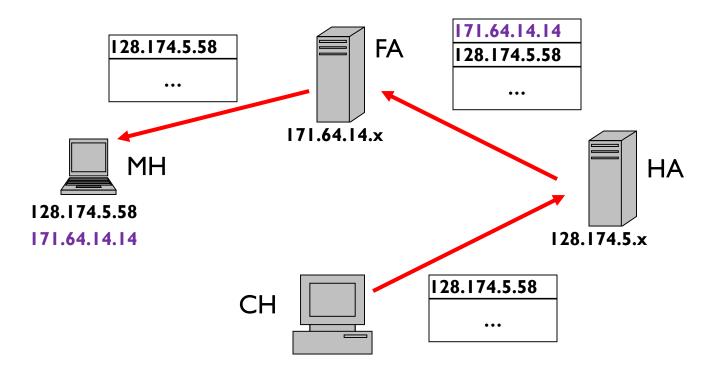
- HA intercepts all packets for MH
 - Using proxy ARP
- HA tunnels all packets to FA
 - IPIP "IP within IP"
 - Upon receipt of an IP datagram
 - Packet is encapsulated in an IP packet of type IPPROTO_IPIP and sent to FA
 - \square FA strips IPIP header and sends packet to MH using local IP address
- FA strips packet and forwards to MH


Registration

MA must register with FA and tell HA its new care-of-address

- MH sends registration request message to FA
- FA forwards request to HA
- HA returns registration reply message to FA
- FA forwards reply to MH
- Registration may have a set lifetime

Care-of-Address Registration


Timeout

IPIP - "IP within IP"

- Tunnel IP datagrams from one cell to another
- Upon receipt of an IP datagram
 - Packet is encapsulated in an IP packet of type IPPROTO_IPIP and sent to remote MSS
 - Remote MSS strips IPIP header and sends packet to MH using "real" IP address

Tunneling

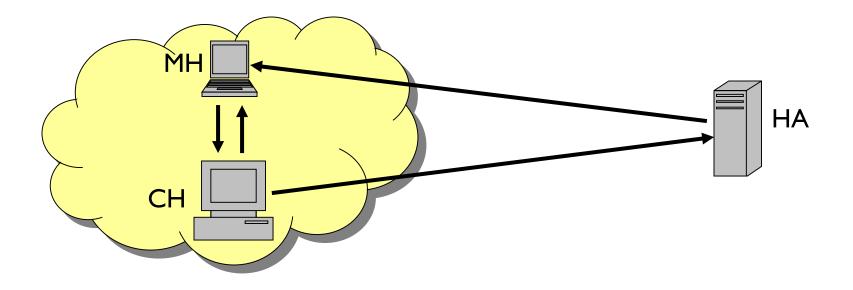
Tunneling Using IP-in-IP Encapsulation

0	4	8	16	19	31			
Vers	IHL	TOS	Total Length					
IP Identification			Flags	Fragment Offset				
TTL		IP in IP	IP Header Checksum					
Tunnel Source IP Address								
Care-of-Address								
			Total Length					
Vers	IHL	TOS		Total Length				
Vers		TOS	Flags	Total Length Fragment Offset				
				9				
	IP Ident	ification	IP H	Fragment Offset leader Checksum				
	IP Ident	cification Orig. Protocol	IP H ce IP Add	Fragment Offset leader Checksum lress				

Tunneling Using Minimal Tunneling Protocol

0	4	8	16	19	31			
Vers	IHL	TOS	Total Length					
IP Identification			Flags	Fragment Offset				
TTL		Min Encap	IP Header Checksum					
Tunnel Source IP Address								
Care-of-Address								
Orig. Protocol S		S	Tunnel Header Checksum					
IP Address of Mobile Host								
Original Source IP Address (only present if S is set)								
TCP/UDP/etc								

Transparent mobility support at network layer


- No modification to network infrastructure
- ×Routing Inefficiency
 - × Triangle Routing Problem

×Security Issues

× Firewalls, Ingress filtering router

Triangle Routing

Route Optimization

- Basic Mobile IP routes all packets for a MH through its home network and HA
 - Limits performance
 - Potential bottleneck
 - Not scalable
- Solution
 - Cache MH location and care-of address

Protocol Scalability

- The Home Network
 - Home agents provide a decentralized, scalable solution
 - No overhead for MH when they are at their home network
- The Foreign Network
 - Foreign agents provide a local scalable solution

Binding Caches

- Provide tradeoff between performance and state
- Impact on the network
 - Routing packets directly to MH reduces overhead in the Internet

Mobile IP Discussion

- Mobile IP not used in practice
- Not designed for truly mobile users
 - i.e. for continuous operation across subnets
 - Switching between subnets is heavy weight
 - Designed for nomadic users, e.g. visitors to a remote site
- Was designed for mobile devices that are contacted by a "client"
 - Very rare: mobile devices usually only run client apps
 - They rarely run services
- Correct solution is to separate identifiers and "locators"

