
Spring 2020 © CS 438 Staff, University of Illinois 1

Switching Hardware

Spring 2020 © CS 438 Staff, University of Illinois 2

Where are we?

n Understand
¡ Different ways to move through a network

(forwarding)
n Read signs at each switch (datagram)
n Follow a known path (virtual circuit)
n Carry instructions (source routing)

¡ Bridge approach to extending LAN concept
n Next: how switches are built and contention

within switches

Spring 2020 © CS 438 Staff, University of Illinois 3

Switch Design

Champaign

Effingham

Springfield

Bloomington

St. Louis

Indianapolis

Chicago

How should we
design Champaign
to accommodate

traffic flows?

Switch architecture

Spring 2020 © CS 438 Staff, University of Illinois 4

Cisco Catalyst 6500

Juniper EX2200

Juniper EX8200

Spring 2020 © CS 438 Staff, University of Illinois 5

Switch Design

Input Port

Input Port

Input Port

Input Port

Input Port

Input Port

Output Port

Output Port

Output Port

Output Port

Output Port

Output Port

Switch
Fabric

Switch Architecture

n Problem
¡ Connect N inputs to M

outputs
n NxM (“N by M”) switch
n Common case: N = M

n Goals
¡ Avoid contention
¡ High throughput
¡ Good scalability

n Near-linear size/cost growth
Spring 2020 © CS 438 Staff, University of Illinois 6

Input Port

Input Port

Input Port

Input Port

Input Port

Input Port

Output Port

Output Port

Output Port

Output Port

Output Port

Output Port

Switch
Fabric

Switch high level architecture

n Ports handle complexity
¡ Forwarding decisions at

input ports
¡ Buffering at output and

possibly input ports

n Simple fabric (it seems…)
¡ Move packets from inputs to outputs
¡ May have a small amount of internal buffering

Spring 2020 © CS 438 Staff, University of Illinois 7

Input Port

Input Port

Input Port

Input Port

Input Port

Input Port

Output Port

Output Port

Output Port

Output Port

Output Port

Output Port

Switch
Fabric

Switch Design Goals

n Minimize Contention
¡ Avoid contention through intelligent buffering
¡ Use output buffering when possible
¡ Apply back pressure through switch fabric
¡ Improve input buffering through non-FIFO

buffers
n Reduces head-of-line blocking

¡ Drop packets if input buffers overflow

Spring 2020 © CS 438 Staff, University of Illinois 8

Switch Design Goals

n Maximize Throughput
¡ Main problem is contention
¡ Need a good traffic model

n Arrival time
n Destination port
n Packet length

¡ Telephony modeling is well understood
n Until faxes and modems

¡ Data traffic has different properties
n E.g., phone call arrivals are “Poisson”, but packet

arrivals are “heavy-tailed”
Spring 2020 © CS 438 Staff, University of Illinois 9

Spring 2020 © CS 438 Staff, University of Illinois 10

Contention

n Problem
¡ Some packets may be destined for the same output port

n Solutions
¡ One packet gets sent first
¡ Other packets get delayed or dropped

n Delaying packets requires buffering
¡ Buffers are finite, so we may still have to drop
¡ Buffering at input ports

n Increases, adds false contention
n Sometimes necessary

¡ Buffering at output ports
¡ Buffering inside switch

Spring 2020 © CS 438 Staff, University of Illinois 11

Buffering

Waiting to buy food
Waiting for

Cust. service

standard checkout lines customer service

We need “buffering”,
places where people
can wait before they

get service

Spring 2020 © CS 438 Staff, University of Illinois 12

Output Port Buffering

Waiting to buy food

standard checkout lines customer service

Waiting for
Cust. serviceHow big should buffers be?

à Should make sure we can hold enough
à But don’t want people to wait forever

Switch Design

Spring 2020 © CS 438 Staff, University of Illinois 13

Input Port 1

Input Port 2

Input Port 3

Input Port 4

Input Port 5

Input Port 6

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Output Port 6

Output
Queues

Add output queues to hold packets
Packet remains queued here until
output port available to send

Spring 2020 © CS 438 Staff, University of Illinois 14

Input Port Buffering
standard checkout lines customer service

Waiting for
Cust. servicePeople waiting to get

into the store

Waiting to buy food We also need buffering
at the input, since processing
can be slower than input rate,

or delays at output

Switch Design

Spring 2020 © CS 438 Staff, University of Illinois 15

Input Port 1

Input Port 2

Input Port 3

Input Port 4

Input Port 5

Input Port 6

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Output Port 6

Input
Queues

Output
Queues

Add input queues to temporarily hold
received packets until they can be processed
Packet remains queued until input queue
empties, until output queue has free slots

Switch design:
putting the pieces together

Spring 2020 © CS 438 Staff, University of Illinois 16

Input Port 1

Input Port 2

Input Port 3

Input Port 4

Input Port 5

Input Port 6

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Output Port 6

Input
Queues

Output
Queues

Interconnection
Network

Switch design:
putting the pieces together

Spring 2020 © CS 438 Staff, University of Illinois 17

Input Port 1

Input Port 2

Input Port 3

Input Port 4

Input Port 5

Input Port 6

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Output Port 6

Input
Queues

Output
Queues

Interconnection
Network

Packet remains queued
until input queue empties and
output queue 3 has free slots Packet remains queued until

output port available to send

Looks in forwarding table,
finds output port 3 is associated
with destination

Spring 2020 © CS 438 Staff, University of Illinois 18

Contention – Head of Line
Blocking

standard checkout lines customer service

cashiers are standing by!cashiers are standing by!cashiers are standing by!

People waiting to get
into the store

waiting for free
slots in cust. svc line “Head of line blocking”

slows throughput

Head of Line Blocking

Spring 2020 © CS 438 Staff, University of Illinois 19

Input Port 1

Input Port 2

Input Port 3

Input Port 4

Input Port 5

Input Port 6

Output Port 1

Output Port 2

Output Port 3

Output Port 4

Output Port 5

Output Port 6

Input
Queues

Output
Queues

Interconnection
network:

“switch fabric”

Two packets with same output
port à contention

We can’t send this packet, even
though it’s not contending for resources!

Unblocking head of line
blocking

n Solution 1: No input queue
¡ Switching fabric (hopefully) keeps up with input

rate
n Solution 2: No need to always serve packet

at head of queue. Could pick any!
¡ Each input port has separate queue for each

output port
n Next question: which packet do we pick?

Spring 2020 © CS 438 Staff, University of Illinois 20

Picking packets’ ports

Spring 2020 © CS 438 Staff, University of Illinois 21

132

41

4

142

Input port 1

Input port 2

Input port 3

Input port 4

4
Switching fabric

Output port 1

Output port 2

Output port 3

Output port 4

Picking packets’ ports

n Underlying problem for max throughput in
single timestep: bipartite matching
¡ Pick max subset of edges using 1 edge per

node
Spring 2020 © CS 438 Staff, University of Illinois 22

132

41

4

142

Input port 1

Input port 2

Input port 3

Input port 4

4
Switching fabric

Output port 1

Output port 2

Output port 3

Output port 4

Picking packets’ ports

n Switches may not find optimal solution: we
also want
¡ Fairness
¡ Simplicity of implementation

Spring 2020 © CS 438 Staff, University of Illinois 23

132

41

4

142

Input port 1

Input port 2

Input port 3

Input port 4

4
Switching fabric

Output port 1

Output port 2

Output port 3

Output port 4

What we know so far

n Buffering masks temporary contention
n Need to carefully manage queues

¡ Head-of-line blocking problem
¡ Fairness
¡ Throughput

Spring 2020 © CS 438 Staff, University of Illinois 24

What we know so far

n Did we completely solve contention
problem? Could a packet ever be
dropped?
¡ Yes: queues can still overflow
¡ Solution 1: plan allowed packet rates in

advance – virtual circuit switching
¡ Solution 2: dynamically request rate

reduction – backpressure

Spring 2020 © CS 438 Staff, University of Illinois 25

Spring 2020 © CS 438 Staff, University of Illinois 26

Contention – Back Pressure

n Let the receiver tell the sender to slow down
¡ Propagation delay requires that the receiver

react before the buffer is full
¡ Typically used in networks with small

propagation delay

switch 1 switch 2

“no more, please”

Spring 2020 © CS 438 Staff, University of Illinois 27

Contention – Back Pressure

n Need to send backpressure before queue
fills

n So, better when propagation delay small
¡ e.g., switch fabrics
¡ e.g., Ethernet pause-based flow control (IEEE

802.3x) used to run FibreChannel over Ethernet

Switch
2 113 2 14 3 2

1
5 4 3

12 123456
9 8 76 5 4

123
stop

1234
7 6 5

stop
12345

8 7 6

stop
123456

9 8

7Discard:

9
123456

8Discard: 9Discard:

123456
Switch

Spring 2020 © CS 438 Staff, University of Illinois 28

Switch Design Goals

n High Throughput
¡ Number of packets a switch can forward

per second
n High Scalability

¡ How many input/output ports can it
connect

n Low Cost
¡ Per port monetary costs

Two simple fabrics

Spring 2020 © CS 438 Staff, University of Illinois 29

Two simple
fabrics for very

large high-
performance

switches!

Shared bus or memory:
Low $, low throughput

Full mesh:
High $, high throughput

Spring 2020 © CS 438 Staff, University of Illinois 30

Special Purpose Switches

n Problem
¡ Connect N inputs to M outputs

n NxM (“N by M”) switch
n Often N = M

n Goals
¡ High throughput

n Best is MIN(sum of inputs, sum of outputs)
¡ Avoid contention
¡ Good scalability

n Linear size/cost growth

Input Port

Input Port

Input Port

Input Port

Input Port

Input Port

Output Port

Output Port

Output Port

Output Port

Output Port

Output Port

Switch
Fabric

Spring 2020 © CS 438 Staff, University of Illinois 31

Switch Design

n Ports handle complexity
¡ Forwarding decisions
¡ Buffering

n Simple fabric
¡ Move packets from inputs to outputs
¡ May have a small amount of internal buffering

Input Port

Input Port

Input Port

Input Port

Input Port

Input Port

Output Port

Output Port

Output Port

Output Port

Output Port

Output Port

Switch
Fabric

Spring 2020 © CS 438 Staff, University of Illinois 32

Switch Design Goals

n Throughput
¡ Main problem is contention
¡ Need a good traffic model

n Arrival time
n Destination port
n Packet length

¡ Telephony modeling is well understood
n Until faxes and modems

¡ Modeling of data traffic is new
n Not well understood
n Will good models help?

Spring 2020 © CS 438 Staff, University of Illinois 33

Switch Design Goals

n Contention
¡ Avoid contention through intelligent buffering
¡ Use output buffering when possible
¡ Apply back pressure through switch fabric
¡ Improve input buffering through non-FIFO

buffers
n Reduces head-of-line blocking

¡ Drop packets if input buffers overflow

Spring 2020 © CS 438 Staff, University of Illinois 34

Switch Design Goals

n Scalability
¡ O(N) ports
¡ Port design complexity O(N) gives O(N2)

for entire switch
¡ Port design complexity of O(1) gives

O(N) for entire switch

Spring 2020 © CS 438 Staff, University of Illinois 35

Switch Design

n Crossbar Switches
n Banyan Networks
n Batcher Networks
n Sunshine Switch

Spring 2020 © CS 438 Staff, University of Illinois 36

Crossbar Switch

n Every input port is connected to every
output port
¡ NxN

n Output ports
¡ Complexity scales as O(N2)

Spring 2020 © CS 438 Staff, University of Illinois 37

Crossbar Switch

Output Port

Output Port

Output Port

Output Port

Input Port

Input Port

Input Port

Input Port

Spring 2020 © CS 438 Staff, University of Illinois 38

Knockout Switch

n Problem
¡ Full crossbar requires each output port to handle up to N

input packets
n Assumption

¡ It is unlikely that N inputs will have packets destined for
the same output port

n Instead
¡ implement each port to handle L<N packets at the same

time
n Challenges

¡ What value of L to use
¡ Managing hotspots

Spring 2020 © CS 438 Staff, University of Illinois 39

Knockout Switch

n Output port design
¡ Packet filters

n Recognize packets destined for a specific port
¡ Concentrator

n Selects up to L packets from those destined for this
port

n “Knocks out” (discards) excess packets
¡ Queue

n Length L

Knockout Switch

n Goal
¡ Want some fairness
¡ No single input should have its packets always
“knocked out”

n Approach
¡ Essentially a “knock out” tennis tournament with

each game of 2 players (packets) chosen
randomly

¡ Overall winner is selected by playing log N
rounds, and keeping the winner

Spring 2020 © CS 438 Staff, University of Illinois 40

Knockout Switch

n Pick L from N packets at a port
¡ Output port maintains L cyclic buffers
¡ Shifter places up to L packets in one cycle
¡ Each buffer gets only one packet
¡ Output port uses round-robin between buffers
¡ Arrival order is maintained

n Output ports scale as O(N)

Spring 2020 © CS 438 Staff, University of Illinois 41

Spring 2020 © CS 438 Staff, University of Illinois 42

Knockout Switch

R R

R

D

R

R
D

R
2x2

random
selector

Delay
unit

Choose L of N
Ex: 2 of 4

What happens
if more than L

arrive?

1 2 3 4

Choice
1

Choice
2

Discard
1

3
4

1
2

34

Discard
1

2
34

Spring 2020 © CS 438 Staff, University of Illinois 43

Self-Routing Fabrics

n Idea
¡ Use source routing on “network” in switch
¡ Input port attaches output port number as

header
¡ Fabric routes packet based on output port

n Types
¡ Banyan Network
¡ Batcher-Banyan Network
¡ Sunshine Switch

Spring 2020 © CS 438 Staff, University of Illinois 44

Banyan Network

n A network of 2x2 switches
¡ Each element routes to output 0 or 1

based on packet header
¡ A switch at stage i looks at bit i in the

header

0
100100

Banyan Network

Spring 2020 © CS 438 Staff, University of Illinois 45

101

101

101

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Spring 2020 © CS 438 Staff, University of Illinois 46

Banyan Network

001

011

110
111

001

011

110

111

001

011

110

111

001

011

110
111

Spring 2020 © CS 438 Staff, University of Illinois 47

Banyan Network

n Perfect Shuffle
¡ N inputs requires log2N stages of N/2 switching

elements
¡ Complexity on order of N log2N

n Collisions
¡ If two packets arrive at the same switch destined

for the same output port, a collision will occur
¡ If all packets are sorted in ascending order upon

arrival to a banyan network, no collisions will
occur!

Collision in a Banyan Network

Spring 2020 © CS 438 Staff, University of Illinois 48

001

011

110

111

001

110

001

110

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

001

110

Collision!
Happens because
input is unsorted

Spring 2020 © CS 438 Staff, University of Illinois 49

Batcher Network

n Performs merge sort
n A network of 2x2 switches

¡ Each element routes to output 0 or 1 based on
packet header

¡ A switch at stage i looks at the whole header
¡ Two types of switches

n Up switch
¡ Sends higher number to top output (0)

n Down switch
¡ Sends higher number to bottom output (1)

U

D

Spring 2020 © CS 438 Staff, University of Illinois 50

Batcher Network

D

D

D

U

D

D

Sort Merge

6

3

1

7

7

3

6

1

7

3

6

1

3

7

6

1

1

7

3

6

Merge

7

3

6

1

Spring 2020 © CS 438 Staff, University of Illinois 51

Batcher Network

8x8
Switch

D

D

D

U

D

D

U

U

U

D

U

U

D

D

D

D

D

D

D

D

D

D

D

D

Sort inputs 0 – 3 in ascending order

Sort inputs 4 – 7 in descending order

Merge 0 – 3
with 4 – 7

Spring 2020 © CS 438 Staff, University of Illinois 52

Batcher Network

n How it really works
¡ Merger is presented with a pair of sorted lists,

one in ascending order, one in descending order
¡ First stage of merger sends packets to the

correct half of the network
¡ Second stage sends them to the correct quarter

n Size
¡ N/2 switches per stage
¡ log2N x (1 + log2N)/2 stages
¡ Complexity = N log2

2N

Spring 2020 © CS 438 Staff, University of Illinois 53

Batcher-Banyan Network

n Idea
¡ Attach a batcher network back-to-back with a

banyan network
¡ Arbitrary unique permutations can be routed

without contention

